Addition and Substitution Reactions of Nitrile-Stabilized Carbanions

Siméon Arseniyadis, University of Wyoming, Laramie, Wyoming Keith S. Kyler, University of Wyoming, Laramie, Wyoming David S. Watt, University of Wyoming, Laramie, Wyoming

1. Introduction

The utilization of carbanions stabilized by various electron-withdrawing groups to effect carbon —carbon bond formation occupies a central position in organic synthesis. This chapter focuses on the reactions of nitrile-stabilized carbanions with an array of carbon electrophiles and updates another chapter along these lines in this series. (1) Subsequent review articles have dealt with various aspects of the chemistry of nitrile-stabilized carbanions. (2-11) In this review, the reactions of nitrile-stabilized anions are grouped according to the nature of the substituents attached to the carbanion center bearing the nitrile group. These substituents include alkyl, alkenyl, alkynyl, and aryl groups as well as various α -oriented halogen-, oxygen-, nitrogen-, sulfur-, and selenium-containing groups. Notably absent from this survey are the carbanions derived from active methylene compounds bearing two electron-withdrawing groups such as cyanoacetate esters, malononitriles, α -sulfonylnitriles, and α -phosphorylnitriles. (12, 13) Also absent are those carbanions such as Reissert compounds, which are the subject of comprehensive reviews. (14-16)

The chapter is arbitrarily subdivided into six sections: (1) reactions of alkyl-, aryl-, and heteroaryl-substituted nitriles; (2) reactions of α , β - and β , γ -unsaturated nitriles as well as tolunitriles; (3) reactions of cyanohydrins and their hydroxyl-protected derivatives; (4) reactions of nitriles bearing α -sulfur and α -selenium substituents; (5) reactions of α -(dialkylamino)nitriles; and (6) reactions of α -halonitriles. Within each of these sections, the reactions are further subdivided according to the nature of the electrophile: (1) alkylation reactions employing alkyl halides, alkyl sulfonates, dialkyl sulfates, and epoxides; (2) arylation reactions involving the substitution of hydrogen, halogen, nitro, or alkoxy groups on aryl or heteroaryl substrates; (3) acylation reactions employing aldehydes, ketones, imines, alkenes, and nitriles; (4) addition reactions involving aldehydes, ketones, imines, alkenes, and alkynes; and (5) Michael-type addition reactions to unsaturated aldehydes, ketones, imines, sulfoxides, sulfonates, and nitro compounds. Finally, a section involving cyclization reactions is included for each of the six groups of nitrile-stabilized anions.

2. Mechanism

2.1. General Considerations

2.1.1.1. Generation of Monoanions of Nitriles

Successful addition and substitution reactions of nitriles depend critically on the generation of the nitrile-stabilized carbanion represented typically by the tautomeric structures 1 and 2.

The frequent appearance of such tautomeric representations in the literature implies a structural uniformity for nitrile-stabilized carbanions that over-simplifies the actual situation. Moreover, the aggregation state of metalated nitriles varies with structure: the lithioacetonitrile species is tetrameric whereas lithiophenylacetonitrile is dimeric in dimethyl sulfoxide. (17) Consistent with the existence of various tautomeric structures for certain nitrile-stabilized carbanions, infrared (IR) studies of the lithium (17-20) or sodium (19, 21) derivatives of acetonitrile display absorptions in the 2000–2200-cm⁻¹ region that are ascribed to the metalated ketenimine tautomer 2. Other possible tautomeric structures (MCH = C = NH, MC \equiv CNH_2 , and $HC \equiv CNMH$) are also suggested, (19) and both infrared and nuclear magnetic resonance (NMR) assignments are offered as supporting evidence. In contrast, the metalated derivatives of the substituted nitriles, isobutyronitrile (19) and phenylacetonitrile, (17, 20-22) display single IR absorptions at 2000 and 2080 cm⁻¹, respectively, which was interpreted to indicate the presence of a single tautomer 1 having a carbon - metal bond.

Deprotonation of primary or secondary nitriles with an array of different bases constitutes the most convenient method for generating the monoanions of nitriles. For this reason, a brief discussion of the influence of structural variations on the acidity of weak carbon acids generally, and nitriles specifically, is appropriate. The effect of common electron-withdrawing groups on the stability of carbanions and hence on the acidity of the conjugate acids decreases in the following order: NO₂ \geq RCO > RSO₂ > CN. (23, 24) This particular order derives, however, from measurements made in dimethyl sulfoxide. Since solvent exerts a substantial influence on apparent acidities by altering the stability and aggregation states of ion pairs, (25, 26) this relative ordering of weak carbon acids may be different in another solvent. For example, in benzene or ether, acetophenone is a stronger acid than fluorene by about 6 pK_a units, whereas in dimethyl sulfoxide fluorene is a stronger acid

by approximately 2 p K_a units. (26) Similarly, the apparent p K_a values of phenylacetylene in ether, (27) cyclohexylamine, (25) and dimethyl sulfoxide (26) increase dramatically. Since detailed studies of the acidity of various nitriles are available only in dimethyl sulfoxide solution, the following discussion focuses on comparisons in this solvent.

Although acetonitrile (pK_a 31.3) (24) is a relatively weak acid in comparison to other carbon acids bearing electron-withdrawing groups, various substituents exert a dramatic influence on pK_a values. The introduction of additional electron-withdrawing substituents such as phenyl groups substantially lowers the pK_a values as shown in the following trend: 9-cyanofluorene (pK_a 8.3), (24) diphenylacetonitrile (p K_a 17.5), (28) phenylacetonitrile (p K_a 21.9), (28) and acetonitrile (pK_a 31.3). (24, 28) The magnitude of the pK_a differential between phenylacetonitrile and acetonitrile is considerably greater than the $\triangle pK_a$ for phenyl substitution in nitromethane or acetophenone. (28) This large differential in the acetonitrile series is ascribed to less of the negative charge residing at the nitrogen atom in the acetonitrile anion than at the more electronegative oxygen atom in the nitromethane and acetophenone anions. The addition of a second phenyl group exerts a less dramatic effect, presumably as a result of steric inhibition of resonance. (28) Other aryl- or heteroaryl-substituted acetonitriles possess acidities comparable to phenylacetonitrile: 1-naphthylacetonitrile (pKa 20.8), (29) 2-naphthylacetonitrile $(pK_a 20.6), (29)$ 2-thienylacetonitrile $(pK_a 21.1), (29)$ and 2-furylacetonitrile $(pK_a 21.1), (29)$ 21.3). (29)

In contrast to phenyl groups, methyl substitution in acetonitrile decreases the acidity of nitriles as illustrated by comparison of acetonitrile (pK_a 31.3) and propionitrile (pK_a 32.5) or phenylacetonitrile (pK_a 21.9) and 2-phenylpropionitrile (pK_a 23.0). (30) This destabilizing influence originates in the polar electron release from methyl relative to hydrogen to the sp^2 carbon in the anion. (30) This result parallels the suggested decrease in the rate of deprotonation of nitriles: CH₃CN > CH₃CH₂CN > (CH₃)₂CHCN (31) and contrasts with the inverse relationship for rates of proton abstraction and acidity for similarly substituted nitromethanes. (32-34) Such findings underscore the difficulties in assigning relative carbanion stabilities from kinetic measurements alone.

The influence of ring size on the acidity of cycloalkanecarbonitriles remains unclear with the exception of the cyclopropyl series. Rehybridization from sp^3 to sp^2 necessary for delocalization of the negative charge introduces considerable strain in cyclopropyl rings (35) and diminishes the acidity of various cyclopropyl systems bearing electron-withdrawing groups. (36) Consonant with this observation is the high degree of retention observed for (-)-(*R*)-2,2-diphenylcyclopropanecarbonitrile (3) in the presence of sodium alkoxides under conditions where an acyclic analog, (+)-(R)-2-methyl-3,3-diphenylpropionitrile (4), undergoes complete racemization. (37) The energy barrier to rehybridization in cyclopropylcarbonitriles is not, however, prohibitively high since racemization is noted using strong bases such as lithium diisopropylamide in aprotic media. (38)

The degree to which heteroatom substituents at the α position of nitriles alter the acidity of acetonitriles varies dramatically. In general, nitriles bearing α -sulfur substituents are more acidic than nitriles bearing α -oxygen or α -halogen substituents, which, in turn, are more acidic than nitriles bearing α -nitrogen substituents. Evidence for this assertion is, in part, found in the following series: C₆H₅SO₂CH₂CN (pK_a 12.0), (39) C₆H₅SCH₂CN (pK_a 20.8), (40, 41) and C₆H₅OCH₂CN (pK_a 28.1). (40) Unfortunately, data bearing on the influence of halogen or dialkylamino substituents on equilibrium acidities of substituted nitriles are not as yet available, and the suggested general trend for the influence of these heteroatoms is extrapolated from analogous ketone and sulfone systems. (40)

The selection of an appropriate base guarantees a high concentration of the requisite nitrile-stabilized carbanion and thwarts various side reactions that intervene when the nitrile and its anion coexist in solution. Since the pK_a of the nitriles considered in this chapter span over 20 pK_a units, the base is usually selected to reflect the acidity range of the nitrile substrates under consideration. In general, the most acidic nitriles include the arylacetonitriles and their heteroaromatic counterparts for which weak bases, particularly sodium hydroxide under phase-transfer conditions, are adequate for the deprotonation task. The less acidic aliphatic nitriles generally require the alkali metal amide and metal alkyl reagents as bases.

Sodium and lithium hydrides react slowly with active methylene compounds bearing only one electron-withdrawing group and thus find application only in the alkylation of arylacetonitriles. The convenience of handling these hydride reagents relative to sodium amide offsets the lower yields of alkylated products occasionally encountered with the use of sodium hydride rather than sodium amide. (42) Application of sodium hydride to the alkylation of aliphatic acetonitriles leads to extensive polymerization under the usual heterogeneous conditions. The very reactive potassium hydride also fails to deprotonate aliphatic acetonitriles and, in the case of 3-phenylpropionitriles, results in dehydrocyanation to give styrenes. (43)

Alkyl metal reagents, including methyllithium, (44, 45) *n*-butyllithium, (46-49) *tert*-butyllithium, (19) phenylsodium, (50) methylmagnesium iodide, (51, 52) isopropylmagnesium chloride, (31) and *n*-butylmagnesium bromide, (31) are occasionally used to metalate nitriles. Their use may be complicated by competitive addition of the organometallic reagent to the nitrile moiety. The ratio of deprotonation to addition is a function of both the alkyl portion and the counterion in the organometallic reagent. For the reagents C_6H_5M , the ratio of deprotonation to addition appears to decrease in the order K > Na > Li > MgX in reactions of phenylacetonitrile or mesitylacetonitrile. (53) In general, successful alkylations using organometallic reagents as bases involve the preparation of tertiary nitriles and employ low temperatures to avoid competitive addition reactions as illustrated by the preparation of **5** (44) and **6**. (50)

$$C_{6}H_{5}CH_{2}CN \xrightarrow{1. CH_{3}Li, (C_{2}H_{3})_{2}O, THF, -100^{\circ}}_{2. CH_{3}I} C_{6}H_{5}C(CH_{3})_{2}CN$$

$$(C_{2}H_{5})_{2}CHCN \xrightarrow{1. C_{6}H_{3}Na, C_{6}H_{6}}_{2. C_{6}H_{3}CH_{2}CI} (C_{2}H_{5})_{2}C(CH_{2}C_{6}H_{5})CN$$

$$(C_{1}H_{5})_{2}CHCN \xrightarrow{6}_{71}C_{6}H_{5}CH_{2}CI$$

A number of different alkoxide bases are used for the alkylation and acylation of arylacetonitriles. Although hindered alkoxides such as potassium *tert*-butoxide are employed successfully in alkylations using alkyl halides, sodium amide is superior to sodium methoxide or sodium ethoxide in terms of yields and reaction times (54) in reactions of alkyl halides with nitriles. The use of alkali metal hydroxides is confined to reactions of aromatic or heteroaromatic acetonitriles and yet, despite this limitation, has found widespread application in nitrile reactions.

The increased acidity of such arylacetonitriles has led to the development of "phase-transfer" catalysis (7, 8, 55-63) for alkylation, (64-81) arylation, (82-87) and even vinylation (88-90) of arylacetonitriles. The mechanism (91-95) of the catalytic process for relatively weak acids such as nitriles is suggested to involve proton abstraction and formation of an ion pair at the interface. The ammonium salt acts as a carrier to transfer the nitrile-stabilized anion into the organic phase where reaction of **8** with an electrophile **9** provides the product

10 and regenerates the catalyst **7**. This mechanism contrasts with earlier suggestions that the

phase-transfer catalyst serves to transport the hydroxide ion from the aqueous layer to the organic layer where deprotonation of the nitrile would occur. In the absence of a phase-transfer catalyst, successful alkylations in a two-phase medium involve reaction at the interface. (92)

In general, phase-transfer alkylations involve the exposure of the active methylene compound to a mixture of alkylating agent, 50% aqueous sodium hydroxide, and a tetraalkylammonium salt, commonly benzyltriethylammonium chloride. As a consequence of using alkali metal hydroxides in either phase transfer or homogeneous reactions, (96) only arylacetonitriles and heteroarylacetonitriles are useful alkylation substrates as illustrated by the ethylation of 1-naphthylacetonitrile to give the monoalkylated product 11. (97) Both monoalkylation and dialkylation are possible depending on the molar ratio of reactants and the structure of the nitrile anion and the alkylating agent. For example, the alkylation of phenylacetonitrile with chloroacetonitrile in which the ratios of the two reagents are varied over the range 1:2 to 3:1 leads exclusively to the dialkylated product 14, (75) reflecting the greater nucleophilicity of the anion of 13 than that of 12. In phase-transfer alkylations, alkyl chlorides are usually preferred over alkyl bromides or alkyl iodides, in contrast to the usual experience with alkylations in aprotic homogeneous media. (98) The use of polymer-bound ammonium salts as the catalytic species (99) in three-phase catalysis appears to offer no advantage over the two-phase, soluble ammonium salt procedure in terms of either yields or monoalkylation and dialkylation ratios.

The alkali metal amides remain among the most popular of the bases for alkylation, arylation, and acylation of a broad range of primary and secondary nitriles. Although dialkylamides were first employed for the alkylation of nitriles almost 50 years ago, (100) there has been a renewed interest in their use in recent years. In part, this interest reflects the fact that the bulky dialkylamide reagents avoid side reactions such as the amidine formation (54, 100, 101) encountered with the use of simple amides and, in addition, avoid the necessity for working with liquid ammonia. A survey of the tabulated examples suggests that substituted amide bases are the reagents of choice for the generation of nitrilestabilized monoanions.

2.1.1.2. Generation of Polyanions of Nitriles

The various dianion species derived from the dimetalation of nitriles can be arbitrarily classified as geminal, vicinal, or distal for delineation of the relative location of the carbanion centers. The generation of "geminal" dianions requires a strong base to effect the second deprotonation, and as a consequence, most studies are restricted to the use of alkyllithium reagents as bases. For example, the dimetalation of acetonitrile with *tert*-butyllithium generates the geminal dianion as evidenced by the evolution of two molar equivalents of isobutane and by the IR spectrum of the metalated intermediate. (19) The "geminal" label applied to the dianion is a misnomer in that the dilithiated ketenimine **16** is a more accurate structural representation than the geminal dianion **15**, but this terminology persists.

Additional evidence consistent with dianion intermediates involves the isolation of dialkylated products from reactions with either alkyl halides or carbonyl compounds. For example, the condensation of dilithioacetonitrile with acetaldehyde provides the bis adduct **17**, (19) and the alkylation of the dilithio derivative of cyanomethylferrocene (**18**) with benzyl chloride leads to the dialkylated product **19**. (49) Analogous dialkylations involving phenylacetonitrile (46, 47) or 3,4-dimethoxyphenylacetonitrile (102) are also attributed to dilithiated nitriles, but such experiments do not exclude a stepwise alkylation of the nitrile through

monoanion intermediates, and this latter pathway appears to intervene in the dialkylation of 3-butenenitrile, (44, 103) phenylacetonitrile, (44) and 1-naphthylacetonitrile. (44) Exposure of 3-butenenitrile (20), for example, to two equivalents of methyllithium leads only to the monoanion 21 according to the NMR spectrum. (44, 103) The rate of reaction of the alkylating agent benzyl bromide with the excess methyllithium is low relative to the metalation of the monoalkylated product 22, and hence the dialkylated material 23 predominates. (103)

This same caution regarding the use of product analyses as mechanistic probes applies to the apparent trimetalation of acetonitrile. The intermediacy of a trimetalated acetonitrile, prepared using either sodium bis(trimethylsilyl)-amide (104, 105) or *n*-butyllithium (106) is suggested by the isolation of the tris(trimethylsilyl)ketenimine (24) and pivalonitrile (25) from reactions with chlorotrimethylsilane and methyl iodide, respectively. Reinvestigation (19) of these reactions revealed that a monometalated acetonitrile is the principal organometallic species produced, and the products arise from sequential alkylation and deprotonation. As yet, conclusive evidence for a trimetalated acetonitrile derivative in solution is not available.

$$CH_{3}CN \xrightarrow{1. NaN[Si(CH_{3})_{3}]_{2} (3 eq), (C_{2}H_{3})_{2}O} [(CH_{3})_{3}Si]_{2}C = C = NSi(CH_{3})_{3}$$

$$(-\%)^{104}$$

$$CH_{3}CN \xrightarrow{1. NaN[Si(CH_{3})_{3}]_{2} (3 eq), (C_{2}H_{3})_{2}O} (CH_{3})_{3}CCN$$

$$(CH_{3})_{3}CCN$$

$$(-\%)^{104}$$

Synthetic applications of geminal nitrile dianions are limited by the requirement for alkyllithium reagents needed for their generation and by the availability of alternative procedures involving nitrile monoanions that often reach the same objectives. The dilithiated derivative of 3,4-dimeth oxyphenylacetonitrile (26) furnishes the cyclopropane 27, for example, in only 24% yield, (102) whereas the sequential dialkylation of 26 through monolithiated intermediates gives 27 in 86% yield. (107) Nevertheless, other dialkylations of dilithio derivatives of phenylacetonitrile lead to synthetically useful yields of cyclic products. (47) The acylation of the dianion of phenylacetonitrile with diethyl carbonate also provides an improved yield of the cyanoester 28 relative to the acylation of the monoanion, where the highly acidic product competes for the monoanion intermediate. (47)

Vicinal dianions and distal dianions of mononitriles obviously require a second stabilizing group (or groups) to obtain the polymetalated species. In the case of vicinal dianions, (108-110) the introduction of β -phenyl groups in a propionitrile provides the expected stabilization and allows the preparation of the dipotassium salt of 2,3,3-triphenylpropionitrile (29). (110) As expected, the most nucleophilic site in such vicinal dianions corresponds to the carbon in the starting material bearing the least acidic hydrogen. Consonant with this expectation, the monoalkylation of the dianion 30 furnishes the β -alkylated nitrile 31, (110) whereas the monoalkylation of the monoanion 32 (110) provides the isomeric product 33. Additional examples involving the regioselective alkylation of dianions include the alkylation of β -cyanoketones such as 34, which provides a synthetic pathway for the β -alkylation of enones. (111) Finally, trapping both nucleophilic centers in vicinal dianions with a bifunctional electrophile leads

to cyclic products, as illustrated by the conversion of the dianion of **29** to the cyclopropane **36**. (109)

The term "distal" dianion refers to those polymetalated intermediates in which one or more carbons intervene between the metalated centers. In cases where the two centers undergoing metalation differ appreciably in acidity, the reactions follow the expected course in which the most nucleophilic center traps the electrophile as illustrated by the preparation of the β -hydroxynitrile **37**. (112) Systems in which the two metalated centers are of comparable nucleophilicity are as yet unexplored.

$HO_{2}C(CH_{2})_{3}CN \xrightarrow{1. \text{ LiNH}_{2}(2 \text{ eq})}{2. C_{6}H_{5}COC_{6}H_{5}} HO_{2}C(CH_{2})_{2}CH[C(C_{6}H_{5})_{2}OH]CN$

2.1.1.3. Alternative Methods for Generating Nitrile Anions

Although deprotonation constitutes the most widely practiced method for generating nitrile anions, several synthetically useful alternatives exist for their generation from nitrile as well as nonnitrile precursors. The methods that start with nitrile-containing materials include the electrochemical generation of nitrile anions, (113, 114) chemical reduction (115) of α , β -unsaturated nitriles, transmetalation of α -(trialkylstannyl)nitriles, (116-119) reduction of α -thioalkoxynitriles (120) or α , α -dibromonitriles, (121) and conjugate addition of nucleophiles to either α , β -unsaturated nitriles (122-127) or cyclopropanecarbonitriles. (128, 129) The scope of these alternatives varies considerably. Those procedures involving the transmetalation of α -(trialkylstannyl)nitriles such as 38 (118, 119) or the reduction of α -thioalkoxynitriles or α , α -dibromonitriles such as **39** (120) and **40**, (121) respectively, reach objectives that are accessible by direct alkylation procedures from simpler starting materials. The example involving the addition of sodium isopropoxide to 1-bicyclobutanecarbonitrile (41) (129) is also an interesting but synthetically limited reaction. Those reactions illustrated by the tandem conjugate addition and alkylation of either acrylonitrile or α -chloroacrylonitrile offer considerable synthetic promise in providing relatively complex products 42, 43, and 44 from simple starting materials in a single step.

Several interesting routes to nitrile anions employ fragmentation reactions of precursors that do not originally contain nitrile functionality. The elimination of lithium oxide from the trilithiated derivative of phenylacetamide (45) constitutes an unusual synthesis of the phenylacetonitrile anion (130, 131) and furnishes a

synthesis of monoalkylated phenylacetonitrile derivatives as illustrated by the preparation of 2-phenylhexanenitrile (**46**). (130) The requirement for *n*-butyllithium for generation of the trilithiated amide intermediate limits the scope of this method. Another procedure involves the fragmentation of *N*,*N*-dimethylhydrazones using lithium diethylamide to obtain nitrile anions that are subsequently alkylated by halides, carbonyl compounds, and epoxides. (132, 133) This method is successful for those hydrazones branched at the α -carbon as illustrated for the conversion of the hydrazone **47** to the alkylated nitrile **48**. (133) Hydrazones derived from straight-chain aldehydes undergo preferential metalation at the α -carbon (132) rather than the *sp*²-hybridized imine carbon.

$$C_{6}H_{5}CH_{2}CONH_{2} \xrightarrow{n-C_{4}H_{9}Li} [C_{6}H_{5}CHLiCN]$$

$$\xrightarrow{n-C_{4}H_{9}Br} C_{6}H_{5}CH(C_{4}H_{9}-n)CN$$

$$\xrightarrow{46} (-\%)^{130}$$

$$(C_{2}H_{5})_{2}CHCH=NN(CH_{3})_{2} \xrightarrow{1. LiN(C_{2}H_{5})_{2}} (C_{2}H_{5})_{2}C(CH_{2}CH=CH_{2})CN$$

$$\xrightarrow{48} (87\%)^{133}$$

2.2. Influence of Electrophile

Nucleophilic substitution and addition reactions of nitrile-stabilized carbanions embrace a variety of mechanisms depending on the nature of the electrophilic partner. A thorough discussion of these mechanistic possibilities is clearly beyond the scope of this chapter, but a brief presentation highlights the significant differences encountered with different electrophiles in their reactions with arylacetonitriles and alkylacetonitriles. The reader is referred to several authoritative reviews of carbanion chemistry, (134-136) for a detailed discussion of mechanism. Since the reactions of nitriles bearing α -oriented oxygen, sulfur, selenium, nitrogen, or halogen functionality generally parallel the reactions of simple nitriles, these reactions are not discussed in any detail.

Available evidence (1) indicates that the alkylation of nitrile anions follows a bimolecular nucleophilic (S_N 2) mechanism. As a consequence, the range of alkylating agents that react with nitrile anions, the stereochemical outcome expected for such reactions, and the influence of solvent (137, 138) reflect similar patterns seen for other S_N 2 reactions. The reader is referred to an earlier chapter in this series (1) that deals extensively with such aspects of nitrile alkylations and provides specific evidence to support these assertions. An electron-transfer mechanism accounts for alkylations of nitriles with tertiary

alkyl halides. (139)

The arylation of nitrile anions involves an array of different mechanisms depending on substrate structure and reaction conditions. An elimination–addition sequence involving benzyne intermediates (140) accounts for substitution reactions of aryl halides lacking electron-withdrawing groups. Specific reactions of benzyne intermediates with nitrile-stabilized anions such as the conversion of isobutyronitrile to the nitrile **49** (141) has received only scattered attention, (141-143) and the mechanism for these substitutions is assigned by analogy to other well-precedented carbanion additions to benzynes. Reactions involving substituted aryl halides that might exhibit *cine* substitution have not been investigated.

 $(CH_3)_2 CHCN \xrightarrow[C_6H_5Br]{NaNH_2} C_6H_5C(CH_3)_2CN$ $(CH_3)_2CHCN \xrightarrow{49} (23\%)^{141}$

Identification of the radical-chain mechanism (S_{RN} 1) for aromatic nucleophilic substitution (144, 145) opens a new approach for effecting regiospecific substitution in unactivated aryl halides, aryl phosphates, and aryl (trialkyl)-ammonium halides by various nucleophiles, including nitrile-stabilized carbanions. Initial electron transfer supplied by an alkali metal to the aryl substrate **50** in ammonia produces the radical anion **51**. In addition, irradiation of enolate anions and aryl halides also induces the generation of the appropriate radical anion **51** in a photostimulated version of the S_{RN} 1 reaction. In subsequent steps, fragmentation of the radical anion **51** furnishes the aryl radical **52** that combines with the nucleophile **53** to form a new radical anion **54**. Electron transfer from **54** to a second aryl substrate **50** furnishes the substitution product **55** and propagates a chain reaction by regenerating the radical anion **51**.

$$C_{6}H_{5}X \xrightarrow{c^{-}} [C_{6}H_{5}X]^{\frac{1}{2}}$$

$$[C_{6}H_{5}X]^{\frac{1}{2}} \longrightarrow C_{6}H_{5} + X^{-}$$

$$S_{1} \xrightarrow{S_{2}} C_{6}H_{5} + R\bar{C}HCN \longrightarrow [C_{6}H_{5}CHRCN]^{\frac{1}{2}}$$

$$C_{6}H_{5} + R\bar{C}HCN \longrightarrow [C_{6}H_{5}CHRCN]^{\frac{1}{2}}$$

$$S_{2} \xrightarrow{S_{3}} \xrightarrow{S_{4}} C_{6}H_{5}CHRCN + [C_{6}H_{5}X]^{\frac{1}{2}}$$

$$[C_{6}H_{5}CHRCN]^{\frac{1}{2}} + C_{6}H_{5}X \longrightarrow C_{6}H_{5}CHRCN + [C_{6}H_{5}X]^{\frac{1}{2}}$$

$$S_{4} \xrightarrow{S_{9}} \xrightarrow{S_{9}} \xrightarrow{S_{5}} \xrightarrow{S_{1}} S_{1}$$

In those cases involving nitrile-stabilized carbanions, nucleophilic substitution by the S_{RN} 1 mechanism is accompanied by numerous side reactions. (145) For example, the reaction of nitriles with various halobenzenes using potassium metal in liquid ammonia affords several products as illustrated by the reaction of propionitrile with chlorobenzene. (145) The poor yield of 2-phenylpropionitrile (56) results from the proclivity of the anion radical progenitor of 56 to lose cyanide ion. This fragmentation generates a benzyl radical that undergoes either further reduction or dimerization. Photostimulated phenylations of nitrile-stabilized anions encounter the same difficulties. In the present stage of development, the S_{RN} 1 reactions are inferior to the classical S_N Ar reactions as a preparative route to simple, substituted arylacetonitriles.

$$C_{2}H_{5}CN \xrightarrow{K, NH_{3}} C_{6}H_{5}CH(CH_{3})CN + C_{6}H_{5}C_{2}H_{5} + (C_{6}H_{5})_{2}CHCN$$

$$\overset{56}{(6\%)^{145}} (34\%) (7\%)$$

$$+ C_{6}H_{5}NH_{2} + C_{6}H_{5}CH(CH_{3})CH(CH_{3})C_{6}H_{5} + C_{6}H_{6}$$

$$(10\%) (12\%, \text{meso:racemic} = 1:1) (38\%)$$

The activating influence of a metal center on the reactivity of aromatic rings finds application in the reactions of arene chromium tricarbonyl complexes with nitrile-stabilized anions. (146) Evidence consistent with the intermediacy of π -(alkylcyclohexadienyl)chromium tricarbonyl anions includes direct NMR evidence as well as product analysis from experiments quenched with various electrophiles. (147) In the case of (π -chlorobenzene)chromium tricarbonyl (57) and the anion of isobutyronitrile, a rapid equilibrium is established in which attack occurs at several positions on the aromatic ring. In the nitrile anion adducts, complex 58a undergoes a relatively slow elimination of chloride to give a π -(alkylbenzene)chromium tricarbonyl 58d. Oxidative removal of the metal species from the intermediates 58b, 58c, and 58d accounts for the observed

products. One exception to this mechanistic picture involves the *cine* substitution observed in the conversion of the *ortho*-disubstituted complex 62 to the *meta*-disubstituted product 63. The outcome in this case was attributed to an intermediate aryne complex, although direct evidence for this pathway is not available. (146)

In cases where the aromatic electrophile bears both electron-withdrawing groups and a potential leaving group, an addition-elimination (S_N Ar) mechanism operates to produce the usual cyclohexadienyl anion that subsequently expels the leaving group. (148-153) In the particular case where

nitrile-stabilized anions act as nucleophiles, this key intermediate cascades to a variety of products depending principally on the structure of the electrophile. Both intramolecular and intermolecular examples of the traditional $S_{h}Ar$ mechanism exist for nitroaromatic substrates where chloro, methoxy, and nitro groups are leaving groups. The preparation of the substituted diphenylacetonitrile **64** (154) and the cyanoanthrol **65** (155) illustrate these reactions. Somewhat more unusual cases derive from nucleophilic attack at carbons not bearing a traditional leaving group. Attack of nitrile-stabilized anions on the unsubstituted *ortho* position of

nitroaromatics leads to benzoxazoles (154, 156) such as **66**, and on the unsubstituted *para* position of nitroaromatics such attack yields p-quinonemethide oximes (157, 158) such as **67**.

3. Scope and Limitations

3.1. Reactions of Nitrile-Stabilized Carbanions

3.1.1.1. Alkylation

All procedures designed to effect the monoalkylation of primary nitriles must contend with formation of dialkylated product. The basis for this competing reaction resides in the equilibria between the monoalkylated product and either the anion of the starting material or the base. In cases where molar equivalents of base and alkylating agent are employed, the synthesis of dialkylated product is accompanied by an equivalent amount of unalkylated material.

 $\begin{array}{rcl} RCH_2CN + B^- & & & R\bar{C}HCN + BH \\ R\bar{C}HCN + R'X & & & RR'CHCN + X^- \\ RR'CHCN + R\bar{C}HCN & & & RR'\bar{C}CN + RCH_2CN \\ RR'\bar{C}CN + R'X & & & RR'_2CCN + X^- \end{array}$

The alkylation of acetonitrile itself presents an interesting problem in that mono-, di-, and trialkylation reactions are all possible. Not unexpectedly, few studies have focused on interrupting the polyalkylation of acetonitrile to obtain mono- or dialkylated products, and in those studies that are available, the yields are invariably low as a survey of the tables would indicate. Exceptions to this statement include reactions of lithioacetonitrile with epoxides where the negatively charged alkoxide intermediate suppresses a subsequent deprotonation at the α position of the intrile adduct. (159, 160) The utilization of a cyanomethylcopper(I) species also proves advantageous in the monoalkylation of acetonitrile with various allylic halides such as *trans*-geranyl bromide to give the nitrile **68**. (48)

Successful monoalkylations of primary nitriles employ strong bases such as

alkali metal hydrides, amides, dialkylamides, or bis(trimethylsilyl)amides to generate high concentrations of the requisite nitrile anions and use reactive primary or secondary alkyl halides or sulfonates to intercept the nitrile anions. Exceptions to this generalization include the successful monoalkylations of arylacetonitriles using sodium hydroxide under phase-transfer conditions. Best yields of monoalkylated products are often encountered with the use of secondary rather than primary halides, where further alkylation is minimized by the steric interactions between the anion of the monoalkylated product and a second alkyl halide. (161, 162) Several interesting applications illustrating such monoalkylations of primary nitriles include the preparation of the β -cyanoketone 69, (163) benzylcyclopropane (70), (164) and the sex pheromone 71 of *Pazalobesia viteana*. (165)

Alkylation of secondary nitriles obviously involves fewer problems than the alkylation of primary nitriles, although the same conditions are generally employed for either family. In detailed studies using 2-phenylpropionitrile, the yields of monoalkylated product are independent of the halide, (166) although one report indicates that alkyl iodides are less satisfactory than other alkyl

halides. (167) The yields of alkylated product from the reactions of 2-phenylpropionitrile with various isomeric butyl chlorides (166) using sodium amide in toluene decrease in the order: $i-C_4H_9 > sec-C_4H_9 > n-C_4H_9 \ge t-C_4H_9$. Yields of alkylation products of the same nitrile with various isomeric pentyl chlorides (167) decline in the same order. In the reactions of 2-phenylbutyronitrile with various isomeric butyl chlorides, (42) yields fall in the order: sec-C₄H₉ > i-C₄H₉ > n-C₄H₉ $\geq t$ -C₄H₉. A report that the direct alkylation of 2,3-diphenylpropionitrile to give 2-methyl-2,3-diphenylpropionitrile requires only methylmagnesium iodide (51) is probably in error. Unreacted methyl iodide in conjunction with the Grignard reagent functioning as the base probably accounts for the observed result. Applications of such alkylations include a synthesis of norphytene (74) (168) by successive nitrile alkylations and reductive decyanation as well as syntheses of steroids and diterpenes. (169-175) In an approach to diterpene alkaloids, the alkylation of the nitrile 75 furnishes the adduct 76 (169) in which the benzocyclobutene represents a masked diene. Pyrolysis of 76 liberates the o-quinodimethane that undergoes a regioselective, intramolecular Diels-Alder reaction to give the tricyclic intermediate 77. (169)

The stereochemical preferences for the introduction of an alkyl group have been examined in reactions of certain cyclic, secondary nitriles. In reactions of

the stereochemically anchored 4-*tert*-butylcyclohexanecarbonitrile (**78**), the ratio of equatorial to axial methylation varies from 81 : 19 for methyl chloride to 42 : 58 for trimethyloxonium tetrafluoroborate. (176) This pattern is consistent with a reactant-like transition state in which the less reactive methyl chloride involves a greater degree of bonding with the nucleophile and hence exhibits a greater degree of stereodiscrimination than the reactive trimethyloxonium tetrafluoroborate. Alkylation of 5-norbornene-2-carbonitrile (**81**) gives the *exo*-alkylated product **82** preferentially and provides a synthetic route to various α -substituted acrylonitriles **83** (177, 178) by a retro-Diels–Alder reaction.

The dialkylation of primary nitriles is valuable in reactions where both alkyl groups to be introduced are identical or where α , ω -dihaloalkanes are used as the electrophilic partners. The former case is relatively unexceptional, although in the case of sodium amide, it is interesting that a successful dialkylation experiment depends critically on the excess alkylating agent consuming the excess sodium amide. (162) Use of four equivalents each of sodium amide and 1-bromo-butane to alkylate phenylacetonitrile furnishes the dialkylated product in 92% yield; an excess of sodium amide without the excess of alkyl halide converts the dialkylated product to its amidine derivative. This problem is also circumvented by employing hindered lithium dialkylamides rather than sodium amide as bases.

Epoxides serve as useful electrophilic partners in reactions with nitrile anions (159, 160, 179, 180) to give γ -hydroxynitriles. An interesting variant of this reaction involves the use of trimethylsilylacetonitrile (84) (181) to afford the trimethylsilylated product 85 through intramolecular silyl group migration. An excess of the epoxide component in this latter reaction leads to the bisadduct 86 in which the two hydroxyl groups are differentiated. The utility of γ -hydroxynitriles is illustrated by their conversion to γ -lactones (181, 182) and 1,4-diketones. (180) Only a limited number of cases employing aziridine

electrophilies such as **87** have been reported, (183) although aziridinium salts presumably serve as electrophiles in the aminoalkylation of nitriles.

3.1.1.2. Cycloalkylation

The alkylation of a primary nitrile with an α , ω -dihalide involves an intramolecular reaction of an ω -halonitrile as the second step in a general synthesis of cycloalkanecarbonitriles. This approach has been applied to the synthesis of cyclopropanes, (46, 47, 49, 97, 102, 107, 184-190) cyclobutanes, (47, 97, 105, 190-193) oxetanes, (194) cyclopentanes, (47, 70, 71, 80, 85, 97, 105, 191, 195-207) cyclohexanes, (70, 97, 105, 191, 199, 201, 202, 204, 206, 208-210) tetrahydropyrans, (70, 201, 202) tetrahydrothiopyrans, (211) piperidines, (212-217) and cycloheptanes, (105, 193) as well as unusual silicon-containing heterocycles. (218) Leaving groups other than halides such as mesylates, (219) epoxides, (220-225) and sulfonium salts (52) also suffice. The approach is sufficiently general to provide avenues to an array of polycyclic systems as illustrated by the syntheses of strained ring systems in nitriles **88** (226) and **89**. (219)

The most common intramolecular alkylations involve the second step in the dialkylation of a primary nitrile with a symmetrical α , ω -dihalide as illustrated by the preparation of cyclopropane **90** (49) and cyclopentene **91**. (207) Unsymmetrical α , ω -dihaloalkanes in which the halogens either differ or exist in different environments also undergo dialkylation with primary nitriles to give

useful products as in the preparation of **92**. (212) In this case, the usual order of leaving-group ability for halides or rates of $S_N 2$ substitution at primary versus secondary centers dictates the structure of the intermediate monoalkylated adduct. The stereochemical outcome in the second, intramolecular step varies as a function of the substituents on the interacting centers as well as the reaction conditions. These factors are illustrated for the

alkylation of phenylacetonitrile with 1,4-dibromopentane to give the cyclopentanes **93** and **94**. (205)

As a group, the cycloalkylation reactions deal largely with primary arylacetonitriles for which the following bases are most commonly employed : sodium amide, (102, 184, 186, 190-192, 195, 196, 211-213) lithium amide, (188, 189) sodium hydroxide under phase-transfer conditions, (70, 71, 80, 85, 97, 201, 202, 214, 215) n-butyllithium, (46, 47, 49, 102) and sodium hydride. (207, 216, 217) Less commonly used bases include sodium hydroxide, (197, 199, 200) potassium hydroxide, (203) sodium naphthalide, (198) potassium tert-butoxide, (208, 210) sodium methylsulfinylmethide, (204) and lithium diisopropylamide. (107) For unsaturated and saturated aliphatic nitriles, the most common bases are sodium bis(trimethylsilyl)amide, (105, 226) sodium hydride, (187) sodium amide, (209) and lithium dialkylamides. (193, 206) The side reactions encountered in the cycloalkylation of primary nitriles involve competitive intermolecular condensations as illustrated by the formation of the bisnitrile 95 (227) in the alkylation of phenylacetonitrile or, in the special case of acetonitrile, the intermolecular alkylation of the cyclic product with another α , ω -dihaloalkane to give the bicyclic dinitrile **96**. (105)

The cycloalkylation of nitriles need not involve just dialkylation reactions. Several interesting ring-forming reactions involve a combination of alkylation and addition reactions. The synthesis of the α -cyanoimine **97** (228) and the cyclo-hexanecarbonitrile **98** (229) illustrates alkylation reactions in tandem with addition reactions to a nitrile or unsaturated ester, respectively. Other examples include the addition of the anions of α -chloroesters to substituted acrylates or acrylonitriles to furnish cyclopropanes (230-244) as shown in the condensation of methyl 2-chloropropionate (**99**) to methacrylonitrile (**100**). (242) Alternatively, an example where the Michael acceptor also bears the leaving group involves the reaction of phenylacetonitrile and ethyl diethylphosphoenolpyruvate (**103**) to give the cyclopropane **104**. (245-247) Deuterium labeling studies show the operation of an intramolecular 1,3-proton shift prior to the cyclization that gives the cyclopropane **104**. (247)

The cyclization of ω -epoxynitriles offers several unique synthetic advantages. In cases where the carbon chain connecting the epoxide and nitrile groups is relatively short, only the highly nucleophilic carbon and not the nitrogen of the ambident nitrile anion can participate in the cyclization. Although the epoxide group in such ω -epoxynitriles appears to offer two potential sites for intra-molecular cyclization, distinct regiochemical preferences make these cyclizations synthetically useful. This regioselectivity reflects the requirement for a collinear arrangement of the nucleophile and the leaving group in the transition state for the cyclization. (221-223, 248) Superimposed on this preference is the fact that nucleophilic attack on unsymmetrical epoxides usually occurs at the least-substituted carbon.

For ω -epoxynitriles bearing a monosubstituted epoxide separated by two to four intervening atoms, ring-forming reactions involving attack at the most substituted internal carbon of the epoxide are favored relative to attack at the terminal carbon. This outcome reflects the dominant influence of the collinearity principle; consequently, the epoxynitrile **105** undergoes cyclization to give the cyclopropane **106**. (220) This regiochemical result is reversed when the epoxynitrile **105** is treated with methylmagnesium iodide, but in this case, opening of the epoxide to the iodohydrin precedes cyclization to the cyclobutane **107**. (220) A heterocyclic variant of this reaction involving the epoxynitrile **108** proceeds to give the pyrrolidine **109**. (225)

The cyclization of ω -epoxynitriles bearing 1,1-disubstituted epoxides also follows the collinearity principle as illustrated by the cyclization of epoxynitriles **110** and **112**. (221, 222) The former reaction again shows that this collinear arrangement of reacting centers overrides the usual considerations of nucleophilic attack on the least-substituted carbon of the epoxide. The cyclization of ω -epoxynitriles bearing 1,2-disubstituted epoxides is complicated by the influence of epoxide stereochemistry. For 1,2-*cis*-epoxides such as **115** (222) and **118**, (224) cyclization favors the smaller ring leading to the predominant formation of cyclobutanes **116** and **119**, respectively, rather than cyclopentanes. The stereochemistry of **118** is not specified, (222) but the use of a Wittig reaction to prepare the 5-heptenenitrile precursor to **118** suggests that the *cis* isomer is the correct structure for the starting material. For ω -epoxynitriles bearing 1,2-*trans*-epoxides, the cyclization leads to the larger ring as illustrated by the preference for the cyclopentane **122** rather than the cyclobutane **121** in the cyclization of **120**. (224)

A preference for S_N2 attack at the least-substituted carbon of an epoxide governs the cyclization of ω -epoxynitriles bearing trisubstituted epoxides.

Consistent with this generalization, cyclization of the ω -epoxynitriles **123a** and **123b** leads to the *cis*-fused indane **124a** (223) and decalin **124b**, (223) respectively. In cases where six-and seven-membered ring cyclizations compete as in **125**, the fused ring product **126** and spirocyclic product **127** are formed in equal amounts. (221) The only exception to the usual preference for attack at the least-substituted end of the epoxide involves the cyclization of **128** to the cyclo-propane **129**, where the collinearity principle dictates the outcome observed.

For tetrasubstituted epoxides in ω -epoxynitriles, the cyclization proceeds to give the smaller ring. An illustration of this process involves the formation of the spirocyclic products **131** (222) and **133** (221) rather than fused-ring products in the

cyclization of ω -epoxynitriles 130 and 132, respectively. Of particular interest is the stereospecific generation of three contiguous chiral centers in 133, which holds great promise in the synthesis of natural products.

3.1.1.3. Side Reactions

Apart from controlling the dialkylation problem during the monoalkylation of primary nitriles, several side reactions can intervene during the alkylation or acylation of nitriles. Fortunately, many of these side reactions can be avoided by selecting the appropriate experimental conditions. In a few instances, side reactions that were once considered as troublesome or as curiosities are now regarded as useful synthetic reactions.

Competitive side reactions that consume the alkyl halide involve dehydrohalogenation or substitution by nucleophilic bases. The use of hindered, nonnucleophilic bases such as lithium diisopropylamide or sodium bis(trimethylsilyl)amide circumvents this problem by generating high concentrations of the nitrile anion and generally innocuous amine byproducts. Dehydrohalogenation by nitrile anions themselves presents a problem in certain cases, although the successful alkylation by 1-chloro-1,2-diphenylethane of the anion of phenylacetonitrile to give the nitrile **134** should be contrasted with the exclusive elimination promoted by the dianion of phenylacetic acid to give stilbene. (249)

In certain instances, the consumption of excess base by alkyl halide actually protects the desired product from further alkylation. (162) In cases where an excess but equivalent amount of sodium amide and alkyl halide gives an excellent yield of alkylated product, the use of sodium amide:alkyl halide ratios greater than one leads to the amidine derived from the desired product.

Electrophilic reagents prone to undergo intramolecular or intermolecular reactions prior to alkylation often afford unexpected products. Acyclic or cyclic unsymmetrical 1-dialkylamino-2-haloethanes such as **135** furnish the alkylated products **136** and **137** through the alkylation of the intermediate aziridinium ion. (250, 251) Not unexpectedly, treatment of the α -bromoester **138** with the anion of diphenylacetonitrile leads to the product **139** derived from dehydrobromination and subsequent Michael addition. (252) Finally, the intervention of a retro-aldol–aldol condensation of the β -hydroxyketone **140** presumably accounts for the rearranged product **141**. (253)

The ambident nitrile anion offers the potential for competitive N-alkylation in

addition to the desired *C*-alkylation. This process intervenes only in highly substituted systems, and Newman's "rule of six" (254) (i.e., the number of atoms that are six atoms from the nitrile nitrogen) correctly gauges those nitriles prone to give ketenimines. In general, those nitriles with a "six number" greater than or equal to 12 give ketenimines in addition to *C*-alkylated products. For example, 3,3-dimethylbutyronitrile (142) with a "six number" of 9 gives the *C*-alkylated product 143 (255) exclusively, whereas 2-isopropyl-3-methylbutyronitrile (144) with a "six number" of 12 gives a mixture of *C*-alkylated and *N*-alkylated products 145 and 146. (255) An increase in the number of carbon *versus* hydrogen substituents in the "six position" also increases the *N*-alkylation: *C*-alkylation ratio. (256)

Other side reactions that affect the nitrile component in alkylation reactions arise from the condensation of the nitrile with bases or with another nitrile anion. The nitrile component is susceptible to self-condensation where the nitrile and nitrile anion coexist in solution. The intramolecular version of this reaction is, of course, well known as the Thorpe–Ziegler condensation. (257) In general, intermolecular condensations of this type leading to β -aminocrotononitriles (258, 259) such as 147 (258) result when alkoxide bases in protic media are used to generate the nitrile-stabilized carbanion.

The utilization of nucleophilic bases such as sodium amide or sodium alkoxides occasionally results in the secondary conversion of a nitrile to an amidine or iminoester. In general, these troublesome additions intervene only in cases where the nitrile is disubstituted or trisubstituted and an excess of base is present. (54, 100, 101) For example, the primary nitrile propionitrile undergoes preferential deprotonation to give the acylated product **148** in high yield, but the secondary nitrile isobutyronitrile undergoes attack at the nitrile group to give ultimately the *N*-benzoylamidine derivative **149**. (54)

The use of nonnucleophilic bases such as lithium diisopropylamide, sodium bis(trimethylsilyl)amide, lithium triphenylmethide, or sodium hydride circumvents these problems altogether and accounts for their growing popularity for the alkylation and acylation of nitriles.

The dehydrocyanation of nitriles to alkenes occurs during nitrile alkylation in which the nitrile possesses a β -phenyl substituent and no α -hydrogens activated by the nitrile group. (110, 161, 260, 261) For example, the alkylation of diphenylacetonitrile with benzyl chloride leads to the triphenylethylene **151** rather than the expected nitrile **150**. (260) The finding that α -aminonitriles such as **152** undergo a similar alkylation–dehydrocyanation reaction to give enamines (76, 261, 262) introduces new synthetic possibilities in that the enamine products themselves can be alkylated in a subsequent step. The dehydrocyanation of various nitriles not necessarily bearing a β -phenyl substituent provides a general enamine synthesis shown for the conversion of α -aminonitrile **153** to enamine **154**. (263) This reaction paves the way for the development of α -aminonitriles as acyl dianion equivalents. (263)

In cases where metallic sodium is used to generate the nitrile anion or where sodium amide is heated with tertiary nitriles bearing at least one α -aryl or α -heteroaryl group, (2, 264-266) the reductive decyanation of the nitrile intervenes as shown in the conversion of aminonitrile **155** to olefin **156**. (264) Although this method for generating nitrile anions has limited popularity, the reductive decyanation process has developed from a curious side reaction to a useful synthetic method. (145) Other examples of reductive decyanation include the use of methyllithium to effect both the metalation and decyanation of 1-naphthylacetonitrile to give 1-isopropylnaphthalene (**157**). (44)

3.1.1.4. Arylation

The traditional addition—elimination mechanism for the substitution of a halogen by a nitrile-stabilized carbanion requires an aromatic ring bearing electron-withdrawing groups. The lack of a mild, direct procedure for removing typical activating groups such as the nitro group restricts the synthetic scope of the reaction, but such substitutions find application in the regiospecific synthesis of various diarylacetonitriles from phenylacetonitriles under phase-transfer catalysis conditions, as illustrated in the synthesis of **158** (83, 87) and **159**. (83, 87) Interestingly, the phase-transfer approach proves successful in certain cases where sodium amide fails to furnish the desired product. Under phase-transfer conditions, both chloro (82, 83, 86) and nitro groups (83, 87) serve successfully as leaving groups, although nitro substitution is quite limited in scope since azoxybenzene derivatives such as **160** (267) are also obtained in certain cases.

Intramolecular substitutions of a chloro or methoxy group by a nitrilestabilized carbanion have been applied in the synthesis of highly substituted anthraquinones. (155, 268-271) In certain cases the cyclization of the nitrile anion succeeds where the analogous ester fails. Cyclization of the benzophenone **161**, for example, using sodium methoxide leads to the

cyanoanthrol **162** (269) in high yield. Further oxidation of the cyanoanthrols provides anthraquinones, as illustrated by the conversion of **162** to **163**. (269) Although a high degree of regioselectivity is noted in the cyclization of the benzophenone **161**, (269) other unsymmetrical examples provide mixtures. (268) These cyclizations generally require polar solvents such as dimethyl sulfoxide or *N*,*N*-dimethylformamide, and in methanol as a solvent the cyclization of the benzophenone **164** takes an entirely different course to give the isoquinoline **166** rather than the cyanoanthrol **165**. (155)

For substitution of halobenzenes lacking electron-withdrawing groups, the benzyne mechanism provides one avenue for attaching a nitrile-stabilized carbanion. Although the intervention of this mechanism may result in *cine*-substitution, intermolecular (141, 143, 272) examples in the literature deal only with monosubstituted halobenzenes, and, with the exception of the sodium amide-catalyzed reaction of bromobenzene with phenylacetonitrile, (143) these reactions provide only modest yields of products. In contrast, the intramolecular version of this reaction offers an efficient, flexible synthesis for the annelation of four-membered, (273-275) five-membered, (273) six-membered, (273) and seven-membered rings (273) onto an aromatic system as illustrated by the preparation of 5-cyanoindane (169). (273)

Yet another alternative for effecting the substitution of halobenzenes with nitrile anions involves the intriguing photostimulated aromatic S_{RN} 1 reaction. (144) This radical chain reaction will accommodate the reactions of nitrile anions with halobenzenes, phenyl diethyl phosphate, and phenyltrimethylammonium iodides. (145, 276) Although the yields of substituted products are modest, this approach promises high regioselectivity in substituted cases (277) and offers considerable scope in that phenol or aniline precursors can be manipulated to furnish arylacetonitriles.

Halobenzenes activated by a π -complexed chromium tricarbonyl group (278) undergo substitution of either the halogen or a hydrogen by secondary nitrilestabilized carbanions. (146) Attack by the anion of isobutyronitrile on the μ ⁶-(chlorobenzene)tricarbonylchromium(0) (57) followed by treatment with iodine after relatively short reaction times furnishes a mixture of chloro and hydrogen substitution products 59, 60, and 61. (146) Long reaction times at ambient temperature favor the irreversible loss of chloride to give the chloro

substitution product **59** as the predominant product in synthetically useful yields. The advantages offered by the use of activating metal carbonyl groups include their preparation in excellent yield under neutral conditions and their removal by use of mild oxidizing agents such as iodine.

Substitution reactions involving the formal replacement of an aromatic hydride by a nitrile anion generally involve aromatic substrates bearing electron-withdrawing groups. The addition of phenylacetonitrile anion to the *ortho* position of various *para*-substituted nitroarenes leads to benzoxazoles as illustrated by the conversion of 4-chloronitrobenzene to benzoxazole **66**. (154, 156) Similar addition of phenylacetonitrile to nitroarenes that are not substituted at the *para* position furnishes *p*-quinonemethide oximes as illustrated by the conversion of nitrobenzene to **67**. (157, 158) Similar condensations using phenylacetonitriles bearing α -alkyl substituents lead to numerous products. (267) However, acetonitriles bearing a leaving group in the α position such as an α -chloro, α -methylthio, α -phenoxy, or α -phenylthio group add to nitroarenes and subsequently expel the leaving group to give "vicarious" substitution products as illustrated by the preparation of the substituted biphenyl **170**. (279)

Several interesting hydride substitution reactions take advantage of the activating and possibly the directing influence (280) of a chromium tricarbonyl group coordinated to an aromatic ring. (146, 147, 281-285) The unsubstituted μ^{6} -(benzene)tricarbonylchromium(0) intercepts a variety of primary and secondary nitrile anions, including anions of the protected cyanohydrin type. Unreactive nitrile anions are usually limited to those bearing phenyl substituents. The reaction accommodates a variety of substituents on the complexed aromatic ring that are seldom present in more traditional aromatic substitution reactions, as illustrated by the attack of isobutyronitrile anion on μ ⁶-(anisole)tricarbonylchromium(0) (171) to give the *meta*-substituted and ortho-substituted products 172 and 173, respectively. (146, 283) A noteworthy feature of this reaction is the high degree of meta regioselectivity for an aromatic ring bearing a traditional ortho, para-directing group. This selectivity presumably reflects the pentadienyl anion character of the transition state leading to the µ⁵-cyclohexadienyl complex. An electron-donating substituent such as the methoxy group has the least destablizing influence in the transition state, leading to a *meta* orientation between the substituent and the attacking nucleophile. μ^{6} -Toluene- and μ^{6} -o-dimethoxybenzenetricarbonylchromium(0) complexes also show a remarkable degree of regioselectivity. In addition to aromatic substitution, the intermediate μ^{5} -cyclohexadienyl complexes provide access to products not available by traditional pathways, as illustrated by the preparation of the 1,3-cyclohexadiene **174** (285) from **171**. Intramolecular cyclizations of this type also provide access to either spirocyclic products such as **176** (285) or fused-ring products such as **178**. (286)

3.1.1.5. Vinylation

In contrast to the acid-catalyzed vinylation of dialkyl malonates with acetylene at high temperatures and pressure, (287) the base-catalyzed vinylation of nitriles provides access to interesting adducts under mild conditions. Acetylene

itself reacts with the anions of substituted phenylacetonitriles under phase-transfer conditions to furnish vinyl derivatives such as nitrile **179**. (89, 90) Substituted acetylenes, including phenylacetylene (89, 90) and *n*-butylthioacetylene, (88) add regiospecifically to nitrile-stabilized carbanions to give the 1,2-disubstituted ethylene derivatives such as **180** and **181**, respectively, as mixtures of stereoisomers in which the *Z*-isomer predominates. In contrast, ethoxyacetylene reacts, as expected, (288) with the opposite regioselectivity to give the 1,1-disubstituted ethylene derivatives as illustrated by the preparation of nitrile

NaOH, [(C2H3)4N]CI C₆H₅C(C₂H₅)(CH=CH₂)CN $C_6H_5CH(C_2H_5)CN -$ HCECH 179 (81%)89.90 C₆H₅CH₂CH(C₆H₅)CN NaOH, [C6H3CH2N(C2H3)3]CI $C_6H_5CH_2C(C_6H_5)(CH=CHC_6H_5)CN$ C.H.CECH (98%)90 C6H3CH(CH3)CN NaOH, [C6H3CH2N(C2H3)3]CI $C_6H_5C(CH_3)(CH=CHSC_4H_9-n)CN$ #-C_H_SC≡CH 181 $(E:Z = 1:2, 74\%)^{88}$

182. (88) However, the vinylation reaction of nitriles is limited in scope since 1-hexyne and diphenylacetylene fail to react. (90)

$$C_{6}H_{5}CH(CH_{3})CN \xrightarrow{N_{8}OH, [C_{6}H_{5}CH_{2}N(C_{2}H_{3})_{3}]Cl} C_{6}H_{5}C(CH_{3})(CN)C(OC_{2}H_{5})=CH_{2}$$

3.1.1.6. Acylation

The acylation of nitrile-stablized carbanions generally employs dialkyl carbonates, (47, 259, 289-292) chloroformates, (289, 292) carboxylic esters, (54, 258, 293-301) carboxylic anhydrides, (259, 299, 302) acid chlorides, (303, 304) or dialkyl oxalates (297, 305, 306) as electrophilic partners. Sodium amide is the base most frequently used in such acylations, and, as expected, two equivalents of base are employed in the acylation of primary nitriles since the product contains a more acidic hydrogen than the starting material. (54, 307) The acylation of secondary nitriles with the use of sodium amide is plagued by various side reactions (54) involving reaction of sodium amide with the nitrile and with the electrophilic partner. Some exceptions to this

generalization are known, as illustrated by the carboethoxylation of the secondary nitrile 2-phenylbutyronitrile with ethyl chloroformate. (289) A promising general solution to this problem employs lithium diisopropylamide and ethyl chloroformate or diethyl carbonate to effect the carboethoxylation of nitriles as in the preparation of cyanoester **183** (292) and uses sodium amide and carboxylic esters to effect the acylation of nitriles as in the preparation of β -ketonitrile **184**. (54)

$$n-C_{4}H_{9}CH_{2}CN \xrightarrow{1. \text{ LDA, THF, }-78^{\circ}}{2. (C_{2}H_{5}O)_{2}CO} \xrightarrow{n-C_{4}H_{9}CH(CO_{2}C_{2}H_{5})CN} \xrightarrow{183} (76\%)^{292} C_{6}H_{5}CH_{2}CN \xrightarrow{1. \text{ NaNH}_{2}, \text{ NH}_{3}}{2. C_{2}H_{5}CO_{2}CH_{3}} C_{6}H_{5}CH(COC_{2}H_{5})CN \xrightarrow{184} (74\%)^{54}$$

3.1.1.7. Alternative Procedures for Alkylation and Arylation of Nitriles The condensation of nitriles with aldehydes or ketones to give acrylonitrile derivatives and the subsequent reduction of the carbon — carbon double bond provides an alternative to the direct monoalkylation of primary nitriles. This approach has the advantage of circumventing the dialkylation problem frequently encountered in the monoalkylation of primary nitriles and is illustrated by the reduction of the unsaturated nitrile **185** to the carboxylic acid **186** with the use of potassium benzylate. (308) Modifications of this approach use various sodium alkoxides to effect the reductive alkylation of phenylacetonitrile (309-314) or α -phenylacetoacetonitrile. (315) This reaction is illustrated by the conversion of phenylacetonitrile to 2-phenyloctanenitrile **(187)** (314) and relies on the Guerbet reaction to dehydrogenate the alcohol to the aldehyde and on the reductive alkylation procedure for phenylacetonitrile and aldehydes uses potassium tetracarbonylhydridoferrate. (316)

Organoboranes intercept the anions of α -chloronitriles to provide another pathway to the direct alkylation and arylation of simple nitrile anions. The addition of B-alkyl-9-borabicyclo[3.3.1]nonane derivatives such as 188 and **190** to the anion of chloroacetonitrile leads to alkyl- or arylacetonitriles in excellent yield. (317) This sequence, in conjunction with hydroboration, provides an overall sequence for the alkylation of acetonitrile with olefins and, as a consequence, offers certain distinct advantages with respect to stereocontrol. For example, the preparation of trans-(2-methylcyclohexyl)acetonitrile by use of traditional methodology requires the uncommon *cis*-2-methylcyclohexyl bromide, whereas the organoborane approach requires the readily available 1-methylcyclohexene. A similar alkylation of diazoacetonitrile with the use of organoboranes is also available. (318) Extension of this organoborane reaction to dichloroacetonitriles provides an efficient synthesis of substituted a -chloroacetonitriles, (319) which, in turn, can be alkylated to furnish various secondary nitriles.

The organoborane route for the arylation of chloroacetonitrile (317) finds an interesting parallel in the arylation of chloroacetonitrile by nitroarenes. (279) In this case, the tentative mechanism involves an *ortho* or *para* addition of α -chloronitrile anion to a nitroarene and the subsequent hydride migration to restore the aromaticity of the ring, as illustrated by the preparation of 4-nitronaphthylacetonitrile (191). (279) Still another cyanomethylation procedure for aromatic compounds involves the photolysis of chloroacetonitrile and aromatic substrates in acetonitrile. (320) Finally, although the focus of this chapter is base-catalyzed reactions of nitriles, the Friedel–Crafts alkylation of

arenes with α -bromonitriles (321) also provides another route to various phenylacetonitriles.

3.1.1.8. Addition to Aldehydes and Ketones

The condensation of nitrile-stabilized carbanions with aldehydes and ketones leads to either β -hydroxynitriles (19, 21, 106, 174, 322-336) or α , β -unsaturated nitriles. (250, 251, 259, 308, 337-350) Deprotonation is the usual method for generating the nitrile anions, but a Reformatsky reaction of α -chloronitriles or α -bromonitriles in the presence of zinc also provides β -hydroxynitriles (351-355) or α , β -unsaturated nitriles. (353) In general, condensations leading to β -hydroxynitriles employ relatively strong bases such as sodium amide, (106, 322, 323) lithium diethylamide, (326) sodium bis(trimethylsilyl)amide, (19) or *n*-butyllithium (106, 328, 333, 336) at low temperatures. In addition, the use of a chelating metal ion such as the magnesium salt of phenylacetonitrile furnishes acceptable yields of β -hydroxynitrile adducts, (324) although a chelating metal ion is not necessary in most instances.

Those condensations leading directly to α , β -unsaturated nitriles generally use sodium hydroxide, (308, 348) potassium hydroxide, (349, 350) sodium methoxide, (346) sodium ethoxide, (337, 339, 340, 356) or piperidine, (259) and as a consequence of using these bases, these condensations typically involve reactions of arylacetonitriles or heteroarylacetonitriles. Reactions that illustrate these generalizations include the condensations leading to the β -hydroxynitrile **192** (326) and the α , β -unsaturated nitriles **193** (349) and **194**. (308)

$C_{6}H_{5}CH_{2}CN \xrightarrow[1-C_{10}H_{7}CH0]{} 1-C_{10}H_{7}CH = C(C_{6}H_{5})CN$ $(88-100\%)^{308}$

Side reactions that may complicate these condensations include self-condensation of the nitrile component, aldol condensation of the carbonyl component in the case of enolizable aldehydes and ketones, and retroreaction of the β -hydroxynitrile adduct. Occasionally, the unsaturated nitrile product undergoes further reaction, as illustrated by the abnormal condensation of phenylacetonitrile and formaldehyde to give the adduct **195**. (357)

$$C_{6}H_{5}CH_{2}CN \xrightarrow[(CH_{2}O]]{NaOCH_{3}} C_{6}H_{5}CCH_{2}CC_{6}H_{5}$$

$$HOCH_{2} CH_{2}OH$$

Alternative procedures for securing unsaturated nitriles include the phosphonate Wittig condensation (12) or an acylation–alkylation sequence illustrated for the preparation of α -(3,4-dimethoxyphenyl)acrylonitrile **196**. (306) A variant of the condensation of nitriles with carbonyl compounds involves the reaction of a diethylaminodichloroborane–nitrile complex with aldehydes in the presence of triethylamine to give modest yields of the β -(dialkylamino)nitriles as illustrated for the preparation of **197**. (358) Another procedure for synthesizing

related β -(dialkylamino)nitriles involves the condensation of nitriles with immonium salts that constitutes a useful annelation procedure, as illustrated in the case of 4-phenanthrenecarbonitrile (**198**). (359)

3.1.1.9. Addition to Nitriles

The well-known Thorpe–Ziegler condensation is applied in the synthesis of medium-ring and large-ring compounds and has been the subject of a review (257) in this series. The limited interest (21, 258, 360-363) in the intermolecular condensations of nitriles stems from the obvious problems presented by cross-coupling reactions between different nitriles and from

alternative routes for preparing β -ketonitriles that do not involve a nitrile electrophile.

3.1.1.10. Addition to Various Michael Acceptors (364)

The regioselectivity of the addition of nitrile anions to α , β -unsaturated aldehydes and ketones varies as a function of substrate and nitrile structure, reaction temperature, and solvent. For α , β -unsaturated aldehydes, the kinetically controlled 1,2-addition products predominate in reactions conducted and quenched at low temperature in ether solvents. (365, 366) For example, the addition of the anion of phenylacetonitrile to crotonaldehyde in tetrahydrofuran at -70° gives predominantly the diastereomeric allylic alcohols **200** in 75% yield. (365) An exception to this generalization is the addition of the anion of phenylacetonitrile to reaction is the addition of the anion of phenylacetonitrile to methacrolein, where the 1,4 adduct **203** predominates even at low temperatures. (365)

To shift the product distribution in favor of the thermodynamically controlled 1,4-addition product, either the temperature of the reaction is elevated or a polar cosolvent such as hexamethylphosphoramide is added to the reaction medium. (365, 366) For example, the dramatic influence of temperature on the product distribution is illustrated by the exclusive isolation of the diastereomeric 1,4 adducts **201** in the addition of phenylacetonitrile to crotonaldehyde in the -30° -to- 0° range. (365, 367) A preference for 1,4 addition is also observed in reactions of nitrile anions with α , β -unsaturated imines, provided the β carbon of the imine is, at most, monosubstituted. (367) For example, the addition of phenylacetonitrile to the unsaturated imine **204** provides the 1,4 adduct **205**. (367)

The 1,4-addition products of nitrile anions and unsaturated aldehydes represent either thermodynamic and/or kinetic products depending on the structure of the nitrile. In the case of the 1,2 adduct 202a of phenylacetonitrile and methacrolein, the addition of hexamethylphosphoramide to a solution of the lithium alkoxide of 202a at -70° renders the 1.2-addition reaction reversible and furnishes a 65 : 35 ratio of the 1,2 adduct and 1,4 adduct 202a and 203a, respectively. (365) In the case of 4-methoxyphenylacetonitrile (199b), the addition of hexamethylphosphoramide to a solution of the lithium alkoxide of the 1,2 adduct 202b does not alter the product distribution, implying that the 1,2-addition reaction is irreversible for this nitrile even in the presence of hexamethylphosphoramide. However, if the addition of the anion **199b** to methacrolein is conducted in a medium where hexamethylphosphoramide is present from the outset, a 60:40 ratio of the 1,2- and 1,4-addition products 202b and 203b is obtained. (365) Similar and, in certain cases, more dramatic illustrations that the 1,4-addition product also represents a kinetic product have been observed (366) and the inability of the lithium cation to complex with the phosphoryl group in hexamethylphosphoramide provides an explanation for kinetic 1,4 addition in this medium. (368) From a synthetic perspective, the ability to alter regiochemistry in favor of 1,4 addition by varying temperature and solvent represents a useful synthetic device.

In the case of α , β -unsaturated ketones, the regioselectivity of the addition of nitrile anions is complicated by the relative instability of the 1,2 adducts

compared to the 1,2 adducts derived from α , β -unsaturated aldehydes. For example, under conditions where unsaturated aldehydes give exclusively 1,2 adducts, the addition of the anion of phenylacetonitrile to 2-cyclohexenone gives a 30:70 ratio of the 1,2 and 1,4 adducts 206 and 207, respectively. (369, 370) Shorter reaction times give a higher proportion of the kinetic 1,2-addition product than in the above reaction but still do not provide the predominant 1,2 regioselectivity noted in aldehyde cases. (365) Predominant 1,2 regioselectivity is noted, however, in addition of the anion of phenylacetonitrile to mesityl oxide in the presence of zinc chloride. (376) The increased reversibility of the tertiary alkoxides derived from ketones relative to the secondary alkoxides derived from aldehydes is consistent with other literature reports (371, 372) and substantiated by the addition of hexamethylphosphoramide as a cosolvent in which case the 1,4 adducts are obtained exclusively. (369, 370) The stereoselectivity in the Michael addition of either phenylacetonitrile (373) or 2-phenylpropionitrile (374) to trans-4-phenyl-3-buten-2-one varies considerably, as shown by the equilibrium mixtures of diastereomeric products 209 and 210. In contrast to the reactions of arylacetonitriles, the anion of acetonitrile undergoes exclusive 1,2 addition to 2-cyclohexenone. (369) Similar 1,2 additions of aliphatic nitriles to benzylideneacetophenone have also been reported. (375) The effect of elevated reaction temperatures or polar cosolvents on the product distribution from aliphatic nitriles is as yet unknown.

The reactions of nitrile-stabilized carbanions with unsaturated esters, (52, 229, 377-390) unsaturated nitriles, (341, 377) unsaturated sulfones, (391) and

unsaturated nitro compounds (392-395) proceed largely in a 1,4 sense and only in certain cases involve competitive 1,2 and 1,4 addition. (295) Unlike nitrile anion additions to α , β -unsaturated aldehydes and ketones, low temperatures favor 1,4 addition over 1,2 addition, and in cases where the addition of the nitrile anion to the unsaturated ester is sluggish at -78°, warming to -20° to 0° is usually sufficient to effect 1,4 addition, as illustrated by the preparation of γ -cyanoester **211**. (386, 389) The 1,4 additions of nitrile-stabilized anions to α , β -unsaturated esters and nitro compounds find application in the synthesis of anthracyclines (388, 390) and aromatic D-homosteroids. (393, 394)

3.1.1.11. Addition to Olefins

The traditional Michael addition (364) of nitrile anions to enones occurs with selected olefins. Since the pK_a of 9-alkylfluorenes is less than the pK_a of aliphatic nitriles, the addition of the corresponding nitrile anions to 9-benzylidenefluorene, (396) 9-furfurylidenefluorene (212), (396) and—in certain cases—benzylideneindene, (396) gives the expected adducts. A similar addition of the anion of phenylacetonitrile to 9,9-bifluorenylidene (213) gives

the expected adduct. (397) An interesting intramolecular addition to the styrene moiety in **214** produces the quinuclidine **215**. (398)

LiN(C2H3)2. THF, (C2H3)2NH, 51-54°

3.2. Reactions of Unsaturated Nitrile-Stabilized Carbanions

The monoanions and dianions derived from aliphatic α , β -unsaturated or β , γ -unsaturated nitriles exhibit a marked α regioselectivity for either monoalkylation (198, 339, 399-401) or dialkylation (44, 103, 165, 206, 402-404) with various alkyl halides. The monoanions of unsaturated nitriles are generated by use of sodium or potassium hydroxide, (400-404) sodium naphthalide, (198) sodium amide, (399, 402, 403) or lithium diisopropylamide; (165, 206, 399, 401) the dianions are generated by using *n*-butyllithium. (44, 103) In general, the best yields are obtained with the use of lithium diisopropylamide in an aprotic medium containing hexamethylphosphoramide. The polar cosolvent ensures a high concentration of the nitrile anion and precludes self-condensations leading to polymeric material. (401) The dialkylation of unsaturated nitriles in conjunction with the reductive decyanation of the tertiary nitrile products represents a useful procedure for the synthesis of isopropylidene-substituted cycloalkanes as illustrated by the preparation of **216**. (206)

The metalation of tolunitriles generates another type of unsaturated nitrilestabilized carbanion that for obvious reasons does not exhibit the usual α regioselectivity. The anions derived from *ortho*-tolunitrile, *meta*-tolunitrile, and *para*-tolunitrile undergo alkylation with alkyl halides, (405-408) activated olefins, (396) or ketones; (406, 408) arylation with aryl halides; (409) and acylation with carboxylic esters. (405, 406) The stabilizing influence of the cyano group is clearly greatest for the *ortho* and *para* isomers, which are conveniently metalated by alkali metal amide and dialkylamide bases. The *meta* isomer is metalated by use of lithium diisopropylamide. The best yields of alkylated products are obtained by simultaneously adding 3-tolunitrile and the electrophile to a solution of the base. (408) Unlike the arylacetonitriles, the alkylation of the tolunitriles gives no dialkylated products, presumably because of the reduced acidity and/or nucleophilicity of the monoalkylated products. For example, the dialkylation of 2-tolunitrile with 1,4-dibromobutane furnishes only the bis derivative **218** (407) and not 2-(cyanophenyl)cyclopentane.

3.3. Reactions of Protected Cyanohydrin Anions

3.3.1.1. Alkylation

Acyl carbanion equivalents (410-412) represent a broad class of synthetic intermediates in which the nucleophilic center possesses a latent carbonyl group. The well-known interconversion of cyanohydrins and carbonyl compounds suggests that the carbanions of protected cyanohydrins would provide a masked nucleophilic carbonyl derivative. This inversion from that normally associated with the carbonyl group has greatly expanded the utility of carbonyl compounds in organic synthesis.

The addition of aliphatic, aromatic, or heteroaromatic cyanohydrins to ethyl vinyl ether, (413-421) *n*-butyl vinyl ether, (422) or dihydro-4*H*-pyran (414) provides a base-stable, protected cyanohydrin derivative. The successful metalation of these protected cyanohydrins, alkylation with alkyl halides, (413-417, 419-421) alkyl sulfonates, (416) or epoxides (418) and, finally, hydrolysis of the product furnishes an array of ketones in good overall yields. Typically, lithium diisopropylamide is used to generate the nitrile anion, but sodium methylsulfinylmethide (414) is also used. Sodium hydroxide under phase-transfer conditions is an alternative for protected cyanohydrins derived from aromatic or heteroaromatic aldehydes. (422) These methods are illustrated by the alkylation of the saturated, aliphatic cyanohydrin derivative **219** with an alkyl halide, (413) the alkylation of the unsaturated, aliphatic

cyanohydrin derivative **220** with an epoxide, (**418**) the intramolecular alkylation of **221**, (**423**) and the alkylation of the aromatic, protected cyanohydrin **222**. (**422**) Additional alkylations involving the methyl, (**194**) ethyl, (**424**) phenyl, (**194**) or benzyl (**194**) ethers of cyanohydrins are known but appear to offer no advantages over the acetal-protected cyanohydrins. One interesting reaction sequence, however, employs a furylmethyl ether in the protected cyanohydrin **223** in conjunction with a [**2**,**3**]-sigmatropic rearrangement to achieve a synthesis of elsholtzia ketone (**224**). (**419**) Finally, although the protected cyanohydrin route displays considerable scope for the synthesis of ketones, the extension of this approach to the protected derivatives of glycolonitrile fails and thus eliminates the use of these reagents for the synthesis of aldehydes.

An alternative to the use of acetal-protecting groups for cyanohydrins involves the *O*-trimethylsilyl ethers, which are readily prepared from aldehydes by use of cyanotrimethylsilane. (425-427) The alkylation of *O*-trimethylsilyl ethers of either unsaturated aliphatic aldehydes (416, 421) or aromatic aldehydes (428-430) with alkyl halides, alkyl sulfonates, and dialkyl sulfates displays considerable scope, but unlike the acetal-protected cyanohydrins, the alkylation of *O*-trimethylsilyl ethers of saturated aldehydes fails. For example, the anion of 2-(trimethylsilyloxy)-2-phenylacetonitrile (225) reacts with primary, secondary, and remarkably with tertiary alkyl halides (139, 428) to give ketones, as illustrated by the preparation of *tert*-butyl phenyl ketone (226). (428) The use of trialkylammonium fluorides to deblock the protected cyanohydrin is sufficiently mild to preserve other reactive functionality in the molecule, as illustrated by the alkylation of the anion of 225 with 2-(bromomethyl)-1,3-dioxolane (227) to give the ketoacetal 228. (430)

The conversion of α , β -unsaturated aldehydes to their protected cyanohydrins and the metalation of these derivatives generates anions that are capable of reacting with electrophiles at either the α or γ position. In reactions with alkyl halides, a high degree of α regioselectivity is noted for either acetalprotected (413, 415, 417, 418) or trimethylsilyl ether-protected (416, 421, 428) cyanohydrins of this type. The hydrolysis of these α -alkylated products provides access to a variety of unsaturated ketones, and, in an interesting case, the α -alkylation of the protected cyanohydrin 229 in conjunction with the Cope rearrangement produces the product 231, which, in turn, furnishes the δ , ϵ -unsaturated ester 232. (421)

3.3.1.2. Arylation

The classic S_N Ar substitution of activated aryl halides by protected cyanohydrin anions provides substituted benzophenones (194, 414) in modest

yield, as illustrated by the preparation of **233**. (414) Another procedure for the arylation of protected cyanohydrin anions involves the use of aromatic substrates activated as their π -chromium tricarbonyl complexes. (146, 283) Addition of the anion of **234** to the 1,3-dimethoxybenzene complex leads, for example, principally to the *meta*-substituted isomer **235**. Preferential *meta* regioselectivity is also noted with other π -chromium tricarbonyl complexes of arenes. Other arylation reactions of cyanohydrin anions include interesting but synthetically limited additions to quinoline *N*-oxides to give substituted quinolines such as **236**. (431)

3.3.1.3. Addition to Aldehydes and Ketones

The benzoin condensation (432, 433) represents the forerunner of the acyl anion equivalents of the protected cyanohydrin type and in various forms, continues to find application in synthesis. (434-442) The condensations of anions of cyanohydrins themselves with other aldehydes and Michael acceptors is necessarily restricted to the cyanohydrins of nonenolizable aromatic or heteroaromatic aldehydes where the weak base sodium cyanide generates the necessary anion. Other base-labile cyanohydrin derivatives such as the O-benzoates of mandelonitrile also employ the mild base potassium carbonate in condensations with aliphatic aldehydes. (443) Alternatively, the reaction of cyanide with benzil is used to generate a similar intermediate anion that condenses with aliphatic and aromatic aldehydes (444) to give the expected products or, in a curious reaction, with benzil itself (445) to give the stilbenediol dibenzoate 237.

The condensation of acetal-protected cyanohydrins derived from saturated aliphatic aldehydes with aldehydes or ketones provides α -hydroxyketones. (446) The reaction of the protected cyanohydrin 219 with cyclohexanone, for example, provides 1-acetylcyclohexanol (238). (446) The corresponding derivatives of aromatic aldehydes do not, however, undergo successful additions. (446) In the case of the O-trimethylsilyl ether-protected cyanohydrins derived from aromatic aldehydes, condensation with aldehydes and ketones, followed by an intramolecular migration of the trimethylsilyl group and elimination of cyanide, does give the expected α -trimethylsilyloxy ketones. (447, 448) For example, the condensation of the cyanohydrin derivative 225 with cyclohexanone gives the α -trimethylsilyloxy ketone 239. (447) Finally, the condensation of the O-trimethylsilyl ether-protected cyanohydrins derived from unsaturated aldehydes with aldehydes and ketones displays a kinetically controlled α regioselectivity at -78°, as illustrated by the preparation of α -hydroxyketone 240. (449) In contrast, the addition to these same electrophiles at 0° shows thermodynamically controlled y regioselectivity, as illustrated by the preparation of γ -lactone **241**. (449)

3.3.1.4. Addition to Various Michael Acceptors

The anions of protected cyanohydrins derived from saturated aliphatic aldehydes undergo competitive 1,2 and 1,4 addition to unsaturated electrophiles. The proportion of the two adducts appears to vary as a function of both structure and solvent. Steric interactions that favor dissociation of the reversibly formed 1,2-addition product increase the proportion of the 1,4-addition product. For example, increasing the size of the substituent R in a protected cyanohydrin 242 from a methyl group in 242a to an *n*-pentyl group in 242b increases the ratio of 1,4-addition product 244 to 1,2-addition product 245 from 1.5 to 2.7 in reactions with cyclohexenone (243a). (450) This ratio also increases from 1.5 to 6 in going from cyclohexenone (243a) to 6-methylcyclohexenone (243b) by use of the nitrile anion 242a. (450) Finally, the addition of the anion 242a to 3-methylcyclohexenone gives, as expected, almost exclusively the 1,2-addition product. (446, 450) An interesting variant of these Michael-type additions involves the 1,6 addition of the anion of 246 to the unsaturated sulfone 247 as a route to the dienone 248. (451) Finally, the

cyanide-catalyzed addition of unprotected cyanohydrins to enones or acrylonitriles proceeds in a 1,4 sense to give 1,4-diketones but is necessarily restricted to cyanohydrins of aromatic (435, 436, 452) or heteroaromatic (434-436) systems.

The anions of protected cyanohydrins derived from unsaturated aldehydes react with unsaturated electrophiles with α regioselectivity with respect to the anion and with 1,4 regioselectivity with respect to the electrophile. For example, the protected cyanohydrin **249** derived from crotonaldehyde adds to cyclohexenone and 3-methylcyclohexenone to give the 1,4 adducts **250a** and **250b**, respectively. (450) This result is in marked contrast to the addition of anions of saturated aldehydes to these same enones where considerable 1,2 addition is noted. The reported conditions (450) under which the anions of unsaturated, protected cyanohydrins add to enones are similar to conditions where these same anions exhibit γ regioselectivity in addition to ketones. (449, 453) A consistent mechanistic picture for both substrates may involve the reversible 1,2 addition of the anion of **249** at 0° with γ regioselectivity followed by a Cope rearrangement to the observed 1,4-addition product **250** in the case of unsaturated enones.

3.4. Reactions of Protected Thiacyanohydrins or Selenacyanohydrin Anions

The alkylation of nitriles bearing α -sulfur or α -selenium substituents offers the advantage that the heteroatom provides more stabilization for these carbanions than the corresponding cyanohydrins. As a consequence, mild bases such as potassium hydroxide, (454) sodium hydroxide under phase-transfer conditions, (455-459) and benzyltrimethylammonium hydroxide (454) effect deprotonation of cyanomethyl dimethyldithiocarbamate, (457) *S*-cyanomethyl diethylthiocarbamate, (457) cyanomethyl sulfide, (454) cyanomethyl sulfide, (456, 459) and cyanomethyl methyl sulfide, (458) Examples illustrating such alkylations with alkyl halides and carbonyl compounds include the preparation of **251** (456) and **252**. (454) Alternatively, lithium amide (120) and lithium diisopropylamide (460) also deprotonate α -sulfur-substituted or α -selenium-substituted nitriles. Regioselective α alkylations of α -alkylthioacrylonitriles employ *n*-butyllithium for deprotonation, as illustrated in the preparation of **253**. (454)

In addition to the high yields of alkylation products, the most attractive feature of these reagents stems from the synthetic versatility of the sulfur-containing or selenium-containing substituent. Desulfurization of either a -(alkylthio)acetonitriles (120) or α -(alkylthio)acrylonitriles (454) provides access to various mono- and dialkylated acetonitriles and acrylonitriles, respectively. For example, the reductive alkylation of α -(tert-butylthio)acetonitrile 39 with lithium in tetrahydrofuran containing catalytic amounts of naphthalene or trimesitylborane provides the trialkylated acetonitrile 254. (120) No comparable process is available in the α -oxygen-substituted or α -nitrogen-substituted nitrile families. Simple reductive desulfurization of α -methylthioacrylonitriles such as 255 using Raney nickel (454) furnishes acrylonitriles and offers an alternative to the phosphonate Wittig reaction (12, 13) for the preparation of acrylonitriles. Finally, oxidative elimination of the methylthio (454) or phenylselenyl groups (458) provides access to various acrylonitriles, as illustrated by the generation of I-cyclopropenecarbonitrile (257). (458)

 $(n-C_{5}H_{11})_{2}C(SC_{4}H_{9}-t)CN \xrightarrow{1 \text{ Li}, C_{10}H_{9}, \text{ THF}}{2 \text{ CH}_{2}=CHCH_{2}Br} (n-C_{5}H_{11})_{2}C(CH_{2}CH=CH_{2})CN$ $\xrightarrow{39} (91\%)^{120}$

3.5. Reactions of α -(Dialkylamino)nitrile-Stabilized Carbanions

From a historical perspective, the α -(dialkylamino)nitrile anions were the first acyl anion equivalents to undergo systematic investigation. (261, 461-463)

More recent studies indicate that anions of α -(dialkylamino)nitriles derived from saturated aliphatic, aromatic, or heteroaromatic aldehydes intercept an array of electrophiles, including alkyl halides, (76, 262, 263, 464-466) aryl halides, (466) alkyl sulfonates, (465) epoxides, (465) aldehydes, (467, 468) ketones, (468) acid chlorides, (466) chloroformates, (466) unsaturated ketones, (465, 469) unsaturated esters, (470) and unsaturated nitriles. (470-473) For example, the alkylation of such anions with alkyl halides and ketones is illustrated by the preparation of **258** (474) and **259**, (468) respectively.

Anions of substituted α -(dialkylamino)acrylonitriles or their β , γ -unsaturated counterparts also react with alkyl halides, (475, 476) ketones, (476, 477) and unsaturated ketones (475) with predominant y regioselectivity. This result contrasts with the α regioselectivity observed with the α -oxygen-substituted or α -sulfur-substituted acrylonitriles. The substituents on the nitrogen in α -(dialkylamino)-acrylonitriles have a pronounced influence on the ratio of α -alkylation and y -alkylation products. (476) For example, the α -(dimethylamino) derivative 260a furnishes the α -alkylated and γ -alkylated products 261a and 262a, respectively, in a 50:50 ratio, whereas the *N*-methylaniline derivative **260b** gives exclusively the y -alkylated product **262b**. (476) The addition of aldehydes (476) or ketones (476, 477) to the anions of α -(dimethylamino)acrylonitrile 263a or the analogous piperidine derivative 263b at 0° leads to y -alkylated products such as 264, (477) which is conveniently isolated as the γ -lactone 265. (477) The same additions at -78° furnish the kinetically controlled α -alkylated adducts 266, as illustrated by the preparation of the α '-hydroxyenone **267**. (477)

Advantages associated with the use of α -(dialkylamino)nitrile anions include

the synthesis of both aldehydes and ketones in contrast to the acyl anions in the cyanohydrin family, which cannot be used to prepare aldehydes. For example, the one-carbon homologation of *n*-octyl iodide by use of *N*, *N*-diethylaminoacetonitrile

(268) gives nonanal in excellent yield. (465) With the use of this same reagent, the sequential dialkylation of 268 furnishes the ketone 270. (465) The use of copper sulfate as a cyanide sequestering agent (465, 478) in the hydrolysis of α -(dialkylamino)nitriles is a mild hydrolysis method that in the case of 269 (465) avoids concomitant acetal hydrolysis.

It is also significant that the anions of α -(dialkylamino)nitriles undergo 1,4 addition to various Michael acceptors (465, 469-473) in marked contrast to the 1,3-dithiane anions, which undergo preferential 1,2 addition. For example, the condensation of **271** with methyl vinyl ketone furnishes the 1,4 adduct **272**. (465) However, condensations with enones having two β -alkyl groups give, as expected, predominantly 1,2 addition. (475) Further examples that highlight the utility of α -(dialkylamino)nitriles include the addition of *N*,*N*-diethylamino-acetonitrile (**268**) to epoxides to provide an overall sequence for the carbonylation of olefins (465) and the addition of *N*-(methyleneamino)acetonitrile (**273**) to aldehydes to furnish a one-carbon homologation procedure for the synthesis of acids. (479) Finally, the addition of the anion of α -(dialkylamino)acrylonitriles to Michael acceptors proceeds with γ regioselectivity for the nucleophile and 1,4 regioselectivity for the electrophile, as illustrated in the preparation of the ketone **274**. (475)

A particularly interesting development involves the alkylation of the *nitrogen* of α -aminonitriles with allylic halides and subsequent [2,3]-sigmatropic rearrangement of the allylic ammonium ylids. (480-486) With the use of I-(cyanomethyl)pyrrolidine (275), the reactions with various allylic halides proceed with a stereochemical bias that varies with the substrate to give β , γ -unsaturated aldehydes, as illustrated in the preparation of 276. (481, 482) The procedure also succeeds with benzylic halides to furnish *ortho*-oriented carbonyl and methyl groups on an aromatic ring as in 277. (481) Application of this sequence furnishes intermediates in a new approach to steroids, (484) to various sesquiterpenes such as α -sinensal, (483) and to a highly substituted pyridine (278) as part of an impressive synthesis of streptonegrin. (487)

Several additional interesting reactions conspire to make α -(dialkylamino)-nitriles particularly valuable in comparison with other acyl anion equivalents. For example, the use of chiral α -aminonitriles such as the *N*-formyl derivative **279** allows an asymmetric synthesis of alanine albeit in low optical yield. (489) Oxidation of the amino substituent in the α -aminontrile **280** and thermal elimination of the *N*-oxide provides a route to unsaturated nitriles such as **281**. (466) Finally, the cyano group in α -(dialkylamino)nitriles undergoes elimination on treatment with potassium hydroxide in refluxing toluene to give enamines, (261, 263) undergoes substitution by an alkyl group on treatment with a Grignard reagent derived from a primary alkyl halide, (461, 463, 490-492) or exhibits reductive decyanation on treatment with *tert*-butylmagnesium chloride. (463) The preparations of **282**, (263) **283**, (463) and **284** (463) illustrate these various reactions.

3.6. Reactions of α -Halonitrile-Stabilized Anions

3.6.1.1. Alkylation The direct alkylation of α -halonitriles with alkyl halides has not been investigated, with the possible exception of the dimerization of 2-bromo-2-phenylacetonitrile (**285**) to give dicyanostilbene (**286**). (79, 493-496)

$$C_{6}H_{5}CHBrCN \xrightarrow{KOH, C_{1}H, OH, -15^{\circ}} C_{6}H_{5}C(CN) = C(C_{6}H_{5})CN$$
285
286
(65%)⁷⁹

Fortunately, a versatile indirect procedure is available for the alkylation or arylation of dichloroacetonitrile using organoboranes. (319) The addition of the anion of dichloroacetonitrile to a *B*-alkyl-9-borabicyclo [3, 3, 1]-nonane derivative such as **287** and subsequent migration of the *B*-alkyl group provides

an efficient pathway for the formal alkylation of chloroacetonitrile with an array of olefins.

3.6.1.2. Addition to Aldehydes and Ketones

Extension of the Darzens glycidic ester synthesis (64, 497-499) to the synthesis of glycidonitriles involves the condensation of anions of α -halonitriles with carbonyl compounds to generate the intermediate halohydrins and the subsequent intramolecular displacement of the halide to generate the glycidonitriles. In general, the yields of glycidonitriles in reactions using various α -haloacetonitriles increase in the order I < Br < Cl. (500, 501) Competition experiments indicate that the reactivity of α -halonitriles and α -haloesters decreases in the order

 $CICH_2CO_2C_2H_5 > CICH_2CN > FCH_2CO_2C_2H_5$, (502) but this order does not reflect the superior yields often encountered in reactions of α -chloronitriles with aldehydes and, particularly, ketones in contrast to the reactions of their α -chloroester counter-parts.

Typical bases used for the condensation include sodium hydride, (503-507) sodium hydroxide, (508) sodium methoxide, (509-511) sodium ethoxide, (502, 512-517) sodium or potassium *tert*-butoxide, (503, 504, 507, 518-520) sodium *tert*-amyloxide, (521-525) lithium, sodium or potassium amide, (503, 510, 519) and sodium bis(trimethylsilyl)amide (507) in a variety of solvents, including ether, benzene, *tert*-butyl alcohol, and hexamethylphosphoramide. Phase-transfer catalysis with the use of sodium hydroxide has also been employed in Darzens condensations. (526-531) In general, hindered alkoxide bases are preferred in the Darzens glycidonitrile synthesis, as illustrated in the preparation of **288**, (518) in order to avoid the formation of iminoesters that are encountered using methoxide or ethoxide as bases. (123, 518)

The Darzens condensation of chloroacetonitrile (**289a**) with unsymmetrical carbonyl compounds exhibits relatively little stereoselectivity. In reactions with benzaldehyde (504, 505, 532) using sodium hydride as base, the *E/Z* ratio of glycidonitriles **290a** and **291a** varies from only 1.6 in 1,2-dimethoxyethane to 1.0 in hexamethylphosphoramide. (505) Similar limited variation in diastereomer ratios is noted in condensations with acetophenone. (503) In marked contrast, the condensation of 2-chloro-2-phenylacetonitrile (**289b**) with benzaldehyde (529, 533) exhibits a substantial variation in stereoselectivity depending on the reaction conditions. With the use of sodium *tert*-butoxide, for example, the *E/Z* ratio of glycidonitriles **290b** and **291b** varies from 5.7 in benzene to 0.02 in hexamethylphosphoramide. (533)

In substituted cyclohexanones, equatorial attack by the anion of chloroacetonitrile furnishes diastereomers bearing an axial carbon-oxygen epoxide bond. (518) In addition, the small size of the nitrile group allows the condensation of chloroacetonitrile with 2,2-dimethylcyclohexanone (292) or 2,2,6-trimethyl-cyclohexanone (294) to give the glycidonitriles 293 and 295 in 64% and 33% yields, respectively. In contrast, methyl chloroacetate condenses with 292 in only 20% yield; moreover, it fails to condense with 294. (518) The extended scope of the chloroacetonitrile Darzens condensations relative to their carboxylic ester counterparts and the stereoselectivity observed in condensations of unsymmetrical cyclic ketones make the glycidonitrile synthesis an attractive reaction. Furthermore, glycidonitriles are conveniently transformed to a variety of other products, including α -chloroketones and α -fluoroketones, (518) unsaturated ketones and aldehydes, (518) 1,3-aminoalcohols, (518) and indoles. (515) Hydrolysis of glycidonitriles also provides a one-carbon homologation procedure for the conversion of carbonyl compounds to aldehydes (514) or carboxylic acids. (521)

3.6.1.3. Addition to Various Michael Acceptors

The condensation of the highly nucleophilic anion of chloroacetonitrile with unsaturated carbonyl compounds proceeds in a 1,2 fashion with 4-phenyl-3-buten-2-one to give the unsaturated glycidonitrile **296** as a mixture of diastereomers. In contrast, the anion of 2-chloro-2-phenylacetonitrile attacks 4-phenyl-3-buten-2-one in a 1,4 sense to give the cyclopropane derivatives **297**. (507)

4. Experimental Conditions and Procedures

On the basis of an overview of the tabulated reactions, the most useful bases for the alkylation, arylation, and acylation of nitriles would appear to be the alkali metal hydrides, amides, and dialkylamides. These bases require anhydrous solvents and an element of experimental caution but offer the best yields for the broadest array of electrophiles. The most notable exception to this generalization is the sodium hydroxide-promoted alkylation and arylation of arylacetonitriles under phase-transfer conditions.

Reactions of primary nitriles with various electrophiles under conditions designed to give monoalkylation are inevitably accompanied by the dialkylated byproduct as well as unalkylated starting material. The use of an excess of the nitrile starting material obviously reduces the amount of the dialkylated byproduct and provides an acceptable route to the monoalkylated product, provided the unalkylated material is recovered or removed from the product mixture. In many cases where the nitrile component is the most precious component, this solution is clearly unsatisfactory. In such cases separation of the desired monoalkylated product requires chromatography or distillation, but distillation of such mixtures finds useful application only when the electrophilic component adds a significant increment to the molecular weight of the product. In cases where the scale of the reaction prohibits chromatography or where the electrophile has three or fewer carbons, separation schemes are available that involve either the condensation of the mixture with benzaldehyde for removal of the unalkylated material or the selective saponification of the least-hindered components of the mixture for removal of the dialkylated byproduct. These schemes are not without obvious defects, and hence the alternative condensation-reduction approaches are preferred where the direct monoalkylation procedures provide intractable mixtures. An alternative involves the alkylation of a substituted cyanoacetate and subsequent decarboxylation to obtain the desired secondary nitrile. (131, 534)

The acylation of nitriles furnishes a product considerably more acidic than the starting material. One consequence of this observation is the reduced nucleophilicity of the acylated product relative to the nitrile starting material. Diacylation is rarely a problem, and, in addition, monoacylation provides yet another solution to the problem of the monoalkylation of primary nitriles. The acylation of primary nitriles with alkyl chloroformates or dialkyl carbonates and the subsequent alkylation–decarboxylation excludes the production of any dialkylated material, but, in practice, the yield in such a three-step process probably does not compete with the direct alkylation of the primary nitrile.

The following examples serve to illustrate the range of bases and electrophiles

that react successfully with various nitrile-stabilized carbanions. Since lithium diisopropylamide, lithium diethylamide, and sodium bis(trimethylsilyl)-amide are commonly used for the generation of nitrile anions, procedures for their preparation are included.

4.1.1.1. Lithium Diisopropylamide (LDA) 535a

After 22.8 mL of a hexane solution containing 34.2 mmol of *n*-butyllithium was diluted with 30 mL of anhydrous pentane, 4.15 g (41.5 mmol) of diisopropylamine was added dropwise and with stirring over a 45-minute period. Titration (536) of the resulting colorless solution of LDA with a $2,2\phi$ -bipyridyl indicator showed the concentration of the amide to be 0.53 *M*; at the end point of this titration, the color of the solution changed from dark brown to pale yellow green. Such solutions of LDA in pentane–hexane mixtures were stable for weeks at 25° provided they were not cooled or concentrated to induce the irreversible separation of solid LDA.

4.1.1.2. Lithium Diethylamide 535b

To 60 mL (0.051 mol) of *n*-butyllithium in ether at -15° under nitrogen was added 5.2 mL (0.051 mol) of anhydrous diethylamine in 25 mL of ether. The solution was stirred for 15 minutes at -15° to obtain a 0.565 *M* solution of lithium diethylamide. Alternative procedures use phenyllithium 535c or lithium metal 535b in place of *n*-butyllithium.

4.1.1.3. Sodium Bis(trimethylsilyl)amide 535e

A mixture of 81 g (0.55 mol) of hexamethyldisilazane and 65 g of a 30% sodium amide-benzene suspension in an additional 150 mL of benzene was heated at reflux under a nitrogen stream. The solution of sodium bis(trimethylsilyl)amide was used directly, or alternatively, white crystalline sodium bis(trimethylsilyl)amide was obtained after filtration and concentration in practically quantitative yield.

4.1.1.4. 2-Cyclopentyl-3-phenylpropionitrile (537) [Alkylation of an Aralkyl Nitrile Using Lithium Isopropylcyclohexylamide (LICA)]

To a solution of 1.5 mmol of LICA in 2.2 mL of THF–hexane at -78° under a nitrogen atmosphere was added 197 mg (1.5 mmol) of 3-phenylpropionitrile in 0.4 mL of tetrahydrofuran. After stirring for 5 minutes, this solution was transferred by syringe to a solution of 234 mg (1.57 mmol, 1.05 eq) of cyclopentyl bromide in 0.4 mL of tetrahydrofuran at -78° under a nitrogen atmosphere. The solution was stirred for 1 hour at -78° and 1 hour at 25° . The product was poured into ether, washed with 5% aqueous hydrochloric acid and subsequently with brine, and dried over magnesium sulfate. Chromatography on silica gel furnished 227 mg (76%) of 2-cyclopentyl-3-phenylpropionitrile. Repetition of this experiment using 7.56 g of 3-phenylpropionitrile gave 5.83 g (51%) of product after fractional distillation, bp 114–116° (0.2 mm). Gas–liquid

chromatographic analysis (3 m, 5% SE-30 at 200°) showed that the product was pure.

4.1.1.5. 4-Trimethylsiloxyvaleronitrile (160, 180) [Alkylation of Acetonitrile with an Epoxide]

To a solution of 4.12 g (0.1 mol) of acetonitrile in 300 mL of tetrahydrofuran at -78° was added 0.1 mol of LDA in tetrahydrofuran followed by 5.94 g (0.102 mol) of propylene oxide. After stirring for 1.5 hours at 25° and 1 hour at 65°, the reaction was quenched with 16 g (0.149 mol) of chlorotrimethylsilane. The mixture was stirred for an additional 45 minutes at 25°, concentrated under reduced pressure, diluted with 100 mL of ether, filtered, and again concentrated. The crude product was distilled to afford 13.1 g (78%) of 4-trimethylsiloxyvaleronitrile, bp 65–67° (3 mm).

4.1.1.6. 2,2,3-Triphenylpropionitrile [Alkylation of an Arylacetonitrile Using Potassium Amide]

The preparation of this compound in 95–99% yield by the alkylation of diphenylacetonitrile with benzyl chloride is described in *Organic Syntheses*. (538)

4.1.1.7. 2-Phenyl-4-methylvaleronitrile (539) [Alkylation of an Arylacetonitrile Using Sodium Hydride]

To a suspension of 24.4 g (1.017 mol) of sodium hydride in 200 mL of anhydrous toluene was added a mixture of 122 g (1.043 mol) of phenylacetonitrile and 150 g (1.095 mol) of isobutyl bromide. The mixture was heated at 65°, at which temperature the reaction commenced. The heating mantle was removed, and the flask was cooled in order to keep the reaction from becoming too vigorous during the initial 0.5-hour reaction period. The reaction mixture was refluxed for an additional 5 hours and permitted to stand overnight. Ethanol (40 mL) was cautiously added dropwise, followed by the dropwise addition of 200 mL of water. The organic layer was separated, and the aqueous layer was extracted with benzene. The combined organic layers were washed successively with dilute acid, water, sodium carbonate solution, and water. After filtration through a layer of sodium sulfate, the benzene was evaporated and the product was fractionally distilled to afford 115 g (66%) of 2-phenyl-4-methylvaleronitrile, bp 130–134° (10 mm) [lit. (540) bp 136–138° (15 mm)].

4.1.1.8. 2-Phenylbutyronitrile (85) [Alkylation of an Arylacetonitrile Using Phase-Transfer Catalysis]

To 540 mL of aqueous 50% sodium hydroxide, 257 g (253 mL, 2.2 mol) of phenylacetonitrile and 5.0 g (0.022 mol) of benzyltriethylammonium chloride was added 218 g (150 mL, 2 mol) of bromoethane dropwise over a period of approximately 100 minutes at 28–35°. After addition of bromoethane was complete, stirring was continued for 2 hours and then the temperature was

increased to 40° for an additional 30 minutes. The reaction mixture was cooled to 25°, and 21.2 g (20.3 mL, 0.2 mol) of benzaldehyde was added. The mixture was stirred for 1 hour; the flask was then immersed in a cold-water bath, and 750 mL of water and 100 mL of benzene were added. The layers were separated, and the aqueous phase was extracted with 200 mL of benzene. The organic layers were combined and washed successively with water, dilute hydrochloric acid, and water. The organic layer was dried over magnesium sulfate, and the solvent was removed by distillation under reduced pressure. The product was distilled through a Vigreux column to give 235–242 g (78–84%) of 2-phenylbutyronitrile, bp 102–104° (7 mm).

4.1.1.9. 3-Phenyl-5-chloroanthranil (154) [Arylation of an Arylacetonitrile] To a solution of 74 g (1.1 mol) of potassium hydroxide in 150 mL of methanol was added with stirring and cooling in an ice bath 8.1 g (0.069 mol) of phenylacetonitrile and a solution of 9.9 g (0.063 mol) of 4-nitrochlorobenzene in 100 mL of methanol. The mixture was stirred for 4 hours at 0–5°, and then 400 mL of water was added with stirring. The precipitate was isolated by filtration, washed/with water, and dried. Recrystallization from petroleum ether (bp 60–71°) afforded 6.7 g (46%) of pale yellow needles of 3-phenyl-5-chloroanthranil, mp 114–116°.

4.1.1.10. 2-(4-Nitrophenyl)-2-phenylpropionitrile (83) [Arylation of an Arylacetonitrile Involving Halogen Substitution]

To 6.55 g (0.05 mol) of 2-phenylpropionitrile, 7.88 g (0.05 mol) of 4-chloronitrobenzene, 0.23 g and (0.001 mol) of benzyltriethylammonium chloride in 5–10 mL of benzene or acetonitrile was added 10–15 mL of 50% aqueous sodium hydroxide in small portions. An external cooling bath was applied to maintain the reaction temperature in the 40–50° range. The mixture was stirred for an additional 3–4 hours at 40–50°, cooled, and diluted with water. The mixture was extracted with benzene, dried, and concentrated. Distillation of the crude product furnished 11.6 g (92%) of 2-(4-nitrophenyl)-2-phenylpropionitrile, bp 170° (0.3 mm), mp 76°.

4.1.1.11. 3-Ethoxy-2-methyl-2-phenyl-3-butenenitrile (88) [Vinylation of an Arylacetonitrile]

To 3.3 g (0.025 mol) of 2-phenylpropionitrile and 2.1–3.5 g (0.03–0.05) mol of ethoxyacetylene in 5 mL of dimethyl sulfoxide under a nitrogen atmosphere was added 3 g of powdered potassium hydroxide or sodium hydroxide and 0.1 g of benzyltriethylammonium chloride. The mixture was allowed to stand in a closed vessel at ambient temperature for 24–36 hours. The product was extracted into benzene, washed with water, dried, and distilled to afford 3.2 g (64%) of 3-ethoxy-2-methyl-2-phenyl-3-butenenitrile, bp 134° (9 mm).

4.1.1.12. Ethyl 2-Cyanooctanoate (292) [Acylation of an Alkylacetonitrile]

To 3.1 g (46 mmol) of LDA in approximately 70 mL of a 40% hexane-tetrahydrofuran solution at -74° was added 2.5 g (20 mmol) of octanenitrile in 15 mL of tetrahydrofuran. The solution was stirred for 0.5 hour at -74° and 0.5 hour at 25°. To the nitrile anion solution that was recooled to -74° was added 2.48 g (21 mmol) of diethyl carbonate in 10 mL of tetrahydrofuran. The solution was stirred for 2.5 hours at -74° and quenched with 10 mL of saturated, aqueous ammonium chloride solution. The crude product was diluted with ether; washed successively with water, aqueous hydrochloric acid, and brine; dried; and distilled to afford 2.97 g (76%) of ethyl 2-cyanooctanoate, bp 69–71° (0.04 mm).

4.1.1.13. 2-(4-Chlorophenyl)-4-phenyl-3-oxobutyronitrile. [Acylation of an Arylacetonitrile]

The preparation of this compound in 74–82% yield by the condensation of 4-chlorophenylacetonitrile and ethyl phenylacetate is described in *Organic Syntheses*. (541)

4.1.1.14. (*Z*)-2-(5-Benzyloxy-3-methyl-3-penten-1-yl)-3-hydroxy-4,4-dimethylv aleronitrile (542) [Alkylation of an Alkylacetonitrile with an Aldehyde] To a solution of 4 mmol of LDA in 7.5 mL of 45% hexane-tetrahydrofuran at -78° was added 458 mg (2 mmol) of (*Z*)-7-benzyloxy-5-methyl-5-heptenenitrile and 222 mg (2.6 mmol, 1.3 eq) of pivalaldehyde in 2 mL of tetrahydrofuran over 10 minutes. The reaction mixture was stirred at -78° under nitrogen for 4.5 hours, hydrolyzed by the addition of 3 mL of saturated ammonium chloride, and allowed to warm to room temperature. Water was added, and the product was extracted with three portions of ether. The ether solution was washed three times with 10% hydrochloric acid, three times with water, and once with saturated sodium chloride. After the ether solution was dried over magnesium sulfate and the solvent removed, the residue (0.85 g) was purified by chromatography on 90 g of silica gel. Elution with 10% acetone in hexane afforded 0.482 g (76%) of

(*Z*)-2-(5-benzyloxy-3-methyl-3-penten-1-yl)-3-hydroxy-4,4-dimethylpentanenitr ile.

4.1.1.15. Dimethyl 4-(4-Chlorophenyl)-4-cyanopimelate (383) [1,4 Addition of Arylacetonitrile to an Unsaturated Ester]

A mixture of 18.8 g (0.124 mol) of 4-chlorophenylacetonitrile and 58 mL of methyl acrylate in 60 mL of *tert*-butyl alcohol was brought to reflux temperature. Heating was discontinued, and 10 mL of 40% methanolic Triton B in 28 mL of *tert*-butyl alcohol was added quickly. After 4 hours at the reflux temperature, the mixture was allowed to cool and was subsequently shaken with water and benzene. The organic layer was washed successively with 2.5 *N* hydrochloric acid solution and brine, and the solvent was evaporated. The residue was distilled to afford 28.4 g (71%) of dimethyl 4-(4-chlorophenyl)-4-cyanopimelate, bp 186–191° (0.35 mm).

4.1.1.16. Cyclopropyl Cyanide [Intramolecular Alkylation of an Alkylacetonitrile]

The preparation of this compound in 52–53% yield by the alkylation of 4-chlorobutanenitrile with the use of sodium amide is described in *Organic Syntheses*. (543)

4.1.1.17. 1-Cyanobenzocyclobutene [Intramolecular Arylation of an Aralkylnitrile]

The preparation of this compound in 64–66% yield by the intramolecular arylation of 3-(2-chlorophenyl)propanenitrile is described in *Organic Syntheses*. (274)

4.1.1.18. 10-Cyano-1,3,8-trimethoxyanthracen-9-ol (269) [Intramolecular Arylation of an Arylacetonitrile]

Sodium methoxide (75 mg, 1.8 mmol) was added under nitrogen to a stirred solution of 2-cyanomethyl-2¢,4,6,6¢-tetramethoxybenzophenone (340 mg, 1 mmol) in 20 mL of anhydrous dimethyl sulfoxide. The resulting red solution was heated to 140° and maintained at this temperature for 100 minutes. The solution was cooled, poured into 200 mL of cold 1 *M* hydrochloric acid solution, and extracted with chloroform. The combined organic phase was washed with water and dried, and the solvent was removed to give a yellow crystalline residue. Recrystallization from ethyl acetate gave 280 mg (94%) of 10-cyano-1,3,8-trimethoxyanthracen-9-ol as yellow needles, mp 252°.

4.1.1.19. 2-Cyanobenzyl Phenyl Ketone (405) [Acylation of an Unsaturated Nitrile]

To a rapidly stirred solution of potassium amide prepared from potassium metal (0.1 g-atom, 3.8 g) in 150 mL of anhydrous liquid ammonia was added 11.7 g of 2-tolunitrile in 25 mL of anhydrous ether. An intense red color developed immediately, and the reaction mixture was stirred for an additional 10 minutes to ensure the conversion of the nitrile to its anion. Methyl benzoate (6.8 g, 0.05 mol) in 25 mL of anhydrous ether was added over 10 minutes, at which time the color of the reaction mixture had turned from red to green. Stirring was continued for an additional 1 hour, and the reaction was quenched by the addition of ammonium chloride (6.1 g). The liquid ammonia was displaced by adding 150 mL of ether and heating on a steam bath until the ether began to reflux. The reaction mixture was then poured into a water-ice slurry and acidified with 6 N hydrochloric acid. The phases were separated, and the aqueous phase was extracted with several portions of chloroform. The combined ether and chloroform phases were dried over sodium sulfate, concentrated, and distilled to give 7.3 g (66%) of 2-cyanobenzyl phenyl ketone, mp 109. 1–109.8°.

4.1.1.20. 2-Ethoxy-2-phenylbutyronitrile (424) [Alkylation of a Protected Cyanohydrin]

A solution of potassium *tert*-butoxide (27 g. 0.24 mol) in 270 mL of dry tetrahydrofuran was added dropwise over 30 minutes under nitrogen to a solution of 2-ethoxy-2-phenylacetonitrile (32.2 g, 0.2 mol) in 100 mL of tetrahydrofuran. After an additional 15 minutes 39 g (0.25 mol) of ethyl iodide was added over 15 minutes. The temperature was allowed to warm to 15–20° during the addition of the halide, and the reaction was maintained at this temperature for an additional 45 minutes. The mixture was filtered, and the fil trate was distilled to give 23.8 g (63%) of 2-ethoxy-2-phenylbutyronitrile, bp 113–114° (12 mm).

4.1.1.21. 3-(4-Chlorobenzoyl)propionitrile (440) [1,4 Addition of a Cyanohydrin to an Unsaturated Nitrile]

To a solution of 200 mL of dimethylformamide and 1.0 g (0.02 mol) of sodium cyanide was added a solution of 56.2 g (0.4 mol) of 4-chlorobenzaldehyde in 120 mL of dimethylformamide dropwise over 45 minutes at 35° to obtain a creamy product. Stirring was then continued for 15 minutes, and a solution of 15.9 g (0.3 mol) of freshly distilled acrylonitrile in 80 mL of dimethylformamide was added to this reaction mixture dropwise in the course of 1.5 hours at 34–35°. Stirring was continued for 1.5 hours at the same temperature. A very creamy product was again formed toward the end of the reaction. About 1 L of water was added to the reaction mixture, and the mixture was shaken vigorously. The reaction product was extracted with chloroform. The chloroform solution was washed with water, dried over magnesium sulfate, and the solvent was removed. The crude product (67.9 g) (88%) was distilled to afford 3-(4-chlorobenzoyl)propionitrile, bp 178–182° (0.5 mm), mp 72–73° (lit. (544) mp 76°).

4.1.1.22. 2-Diethylcarbamoylthioheptanenitrile (457) [Alkylation of an α -Sulfur-Substituted Nitrile]

To 0.86 g (5 mmol) of S-cyanomethyl diethylthiocarbamate and 92 mg (0.25 mmol, 0.05 eq.) of tetrabutylammonium iodide in 5 mL of 50% aqueous sodium hydroxide was added 0.62 mL (5 mmol) of 1-bromopentane. The solution was vigorously stirred for 10 hours, diluted with 20 mL of water, and extracted with two 20-mL portions of ether. The ether solution was washed successively with three 20-mL portions of water and 20 mL of brine and dried over sodium sulfate. The crude product was purified by column chromatography with alumina and eluting with 4:1 hexane–chloroform to afford 1.16 g (95%) of 2-diethylcarbamoylthioheptanenitrile.

4.1.1.23. 2-Methyl-3-pyridyl 2-Cyanoethyl Ketone (488) [[2,3]-Sigmatropic Rearrangement of an Ammonium Ylid Bearing Nitrile Functionality]

A solution of 12.32 g (35.6 mmol) of 1-cyanomethyl-1-(2-picolyl)pyrrolidinium benzenesulfonate in 125 mL of anhydrous dimethyl sulfoxide and 290 mL of anhydrous tetrahydrofuran was cooled to -10° , and 1.84 g (38.1 mmol) of 50% sodium hydride in mineral oil was added. The mixture was stirred at -5° to

 -10° for 0.5 hour and allowed to warm to room temperature over 1.5 hours. An additional 1.84 g (38.1 mmol) of 50% sodium hydride in mineral oil was added, and the mixture was heated under reflux for 0.5 hour and then cooled to -10° . A solution of 5.1 g (38 mmol) of 3-bromopropionitrile in 25 mL of tetrahydrofuran was added over 0.5 hour and the reaction stirred for an additional 0.5 hour. The reaction mixture was filtered and concentrated under reduced pressure. The residue was dissolved in ether, and the ethereal solution was washed with a saturated sodium chloride-potassium carbonate solution. The organic solution was filtered, dried over sodium sulfate, and evaporated to give 8.17 g of brown oil. To the oil was added 5 mL of tetrahydrofuran, 15 mL of water, and 30 mL of acetic acid. The solution was stirred at 53° for 24 hours; the volume was reduced to 20 mL under reduced pressure and the product was acidified with 40 mL of 2.2 N hydrochloric acid. The aqueous solution was washed with two portions of ether, basified with potassium carbonate, and extracted with methylene chloride. The methylene chloride solution was dried over magnesium sulfate and the solvent was removed in vacuo. The residue was distilled [147° (0.1 mm)] to yield a yellow oil that crystallized on trituration with ether. The colorless crystals were collected and dried. The yield of 2-methyl-3-pyridyl 2-cyanoethyl ketone was 3.2 g (53%), mp 82–83.5°.

5. Tabular Survey of the Reactions of Nitrile Anions

The tables are arranged according to the nature of the nitrile anion and the electrophile. The nitriles are arbitrarily divided into six broad families: (1) simple alkyl, aryl, and heteroaryl nitriles; (2) α , β -unsaturated and β , y -unsaturated nitriles as well as tolunitriles; (3) cyanohydrins and their hydroxylprotected derivatives; (4) protected thiacyanohydrins; (5) α -(dialkylamino)-nitriles; and (6) α -halonitriles. Within each of these families, various tables are assembled to cover (1) alkylation reactions with alkyl halides, alkyl sulfonates, epoxides, and aziridines; (2) arylation reactions; (3) acylations with carboxylic acid chlorides, anhydrides, esters, nitriles, and dialkyl carbonates; (4) addition reactions with aldehydes, ketones, imines, alkenes, and alkynes; (5) addition reactions to various unsaturated Michael acceptors, and finally (6) intramolecular reactions involving alkylations, acylations, arylations, and Michael-type additions. The intramolecular cases include dialkylation reactions where only one of the two alkylation steps involves an intramolecular reaction. The α , β -unsaturated or β , γ -unsaturated nitriles that also bear various α -oxygen, α -sulfur, α -dialkylamino, or α -halo substituents are listed in the tables corresponding to the various α substituents. Within each table, the compounds are listed in order of increasing number of carbon atoms monoalkylated derivatives listed before dialkylated derivatives, and acyclic groups are listed first followed by monocyclic, aromatic, and heterocyclic substituents. The straight-chain alkyl derivatives are placed before the branched-chain derivatives; the latter groups are listed in order of increased branching. Monocyclic derivatives precede bicyclic derivatives with the isomers with the smallest ring listed first. Oxygen heterocycles are found before sulfur heterocycles, which, in turn, precede nitrogen heterocycles.

The electrophilic agents are also arranged in order of increasing number of carbons. Within a group of electrophilic agents with the same number of carbons, the order of arrangement is chlorides, bromides, iodides, unsaturated halides, sulfonates, epoxides, dihalides, and carbonates. Remaining cases are listed in order of increasing unsaturation. Analogs of these electrophilic agents having heteroatoms inserted in the ring or chain follow the carbocyclic parent to which they are most closely related and following an order in which oxygen precedes sulfur and sulfur precedes nitrogen.

In those entries where more than one reference is cited, the experimental data are taken from the first reference. In examples where the isolated compound resulted from the transformation of the initial adduct, the yield refers to the isolated product, and the footnote denotes the nature of the transformation. The literature is reviewed from 1952 (1) through February 1982. The absence of a rigorous method for gathering all examples of the reactions under review

has undoubtedly resulted in certain omissions for which the authors apologize. Credit for the successful compilation of references and completion of this review goes in part to Beryl Dominy of Pfizer, Thomas Johns of DuPont, and Linda Keiter of the University of Wyoming Science Library to whom the authors are indebted.

Standard abbreviations used throughout the tables are as follows:

B	9-borabicyclononyl
C_4H_3O	furyl
C_4H_3S	thienyl
C_5H_4N	pyridyl
C_6H_{11}	cyclohexyl
$C_{10}H_7$	naphthyl
$C_{10}H_8Mg$	magnesium naphthalide
$C_{10}H_8Na$	sodium naphthalide
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
Et ₂ O	diethyl ether
e_	electrolysis
Fc	ferrocenyl
(HCHO) _n	paraformaldehyde
HMPA	hexamethylphosphoramide
KDTBP	potassium 2,6-di- <i>tert</i> -butylphenoxide
$K_x C_y$	potassium graphite
LDA	lithium diisopropylamide
LICA	lithium isopropylcyclohexylamide
LTMP	lithium tetramethylpiperidide
Ру	pyridine
P	polystyrene
THF	tetrahydrofuran
TMEDA	N,N,N¢,N¢-tetramethylethylenediamine

Table I. Alkylation of Nitrile-Stabilized Carbanions with Alkyl Halides, Alkyl Sulfonates, Epoxides, and Aziridines

View PDF

Table II. Arylation of Nitrile-Stabilized Carbanions

View PDF

 Table III. Acylation of Nitrile-Stabilized Carbanions with Carboxylic

 Esters, Anhydrides, Acid Chlorides, Nitriles, and Dialkyl Carbonates

View PDF

Table IV. Addition of Nitrile-Stabilized Carbanions to Aldehydes, Ketones, Imines, Alkenes, and Alkynes

View PDF

Table V. Tandem Conjugate Addition–Alkylation of α , β -Unsaturated Nitriles with Carbonyl Compounds

View PDF

 Table VI. 1,2-Addition and 1,4-Addition Reactions of Nitrile-Stabilized

 Carbanions to Various Michael Acceptors

View PDF

Table VII. Intramolecular Reactions of Nitrile-Stabilized Carbanions

View PDF

Table VIII. Alkylation of Unsaturated Nitriles with Alkyl Halides

View PDF

 Table IX. Acylation of Unsaturated Nitrile-Stabilized Carbanions with

 Carboxylic Esters and Nitriles

View PDF

Table X. Addition of Unsaturated Nitrile-Stabilized Carbanions toAldehydes, Ketones, and Various Michael Acceptors

View PDF

 Table XI. Intramolecular Reactions of Unsaturated Nitrile-Stabilized

 Carbanions

Table XII. Alkylation of Anions of Protected Cyanohydrins with Alkyl Halides

View PDF

Table XIII. Arylation of Protected Cyanohydrins

View PDF

Table XIV. Acylation of Anions of Protected Cyanohydrins

View PDF

Table XV. Addition of Anions of Protected Cyanohydrins to Aldehydes,Ketones, and Olefins

View PDF

 Table XVI. 1,2-Addition and 1,4-Addition Reactions of Anions of

 Protected Cyanohydrins to Various Michael Acceptors

 Table XVII. Intramolecular Reactions of Anions of Protected

 Cyanohydrins

View PDF

 Table XVIII. Alkylation of Nitrile-Stabilized Carbanions Bearingα-Sulfur

 orα-Selenium Substituents

View PDF

 Table XIX. Arylation of Nitrile-Stabilized Carbanions Bearingα-Sulfur

 Substituents

View PDF

 Table XX. Addition of Nitrile-Stablized Carbanions Bearingα-Sulfur

 Substituents to Aldehydes and Ketones

View PDF

 Table XXI. 1,2 Addition and 1,4 Addition of Nitrile-Stabilized Carbanions

 Bearingα-Sulfur Substituents to Various Michael Acceptors

Table XXII. Intramolecular Reactions of Nitrile-Stabilized Carbanions Bearingα-Sulfur Substituents

View PDF

 Table XXIII. Alkylation ofα-(Dialkylamino)nitrile-Stabilized Carbanions

 with Alkyl Halides and Epoxides

View PDF

Table XXIV. Tandem Conjugate Addition–Alkylation of α -(Dialkylamino)acrylonitriles with Alkyl Halides

View PDF

Table XXV. Arylation of α -(Dialkylamino)nitrile-Stabilized Carbanions

View PDF

Table XXVI. Acylation of α -(Dialkylamino)nitrile-Stablilized Carbanions

View PDF

Table XXVII. Addition of α -(Dialkylamino)nitrile-Stabilized Carbanions to Aldehydes and Ketones

View PDF

Table XXVIII. 1,2 Addition and 1,4 Addition of α -(Dialkylamino)nitrile-Stabilized Carbanions to Various Michael Acceptors

View PDF

 Table XXIX. Intramolecular Reactions of α-(Dialkylamino)nitrile-Stabilized

 Carbanions or Tetraalkylammonium Ylids

View PDF

Table XXX. Alkylation of α -Halonitrile-Stabilized Carbanions

View PDF

Table XXXI. Arylation of α -Halonitrile-Stabilized Carbanions

View PDF

Table XXXII. Darzens Glycidonitrile Synthesis: Reactions of α -Halonitrile-Stabilized Carbanions with Aldehydes and Ketones

View PDF

Table XXXIII. Tandem Conjugate Addition–Alkylation of α -Haloacrylonitriles

View PDF

Table XXXIV. Intramolecular Reactions of α -Halonitrile-Stabilized Anions

C,

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C1	CH,CN	СН	NaN[Si(CH3)3]2	Et ₂ O	1-C₄H₅CN ()	104
		C ₂ H ₅ Br	CioHaNa	THF	n-C3H7CN (35)	198
			NaNH ₂	Et ₂ O	$(C_2H_3)_3CCN$ (58)	545
		H ₂ C-CH ₂	LDA		(CH ₃) ₃ SiO(CH ₂) ₅ CN (68)*	160
		-0	NaNH ₂	THF, -30°	$HOCH_3(CH_3)_2CN$ (-)	159
		CICH ₂ CO ₂ Na		NH,	HO ₂ C(CH ₂) ₂ CO ₂ H (-)*	546
		n-C3H,Br	Li, (C ₂ H ₅) ₂ NH	C ₆ H ₆ , HMPA60°	(n-C ₃ H ₇) ₃ CCN (95)	547
		Cl(CH ₂) ₃ Br			CI(CH ₂) ₄ CN (60)	548
		•	$LiN(C_2H_3)_2$	НМРА	CI(CH ₂) ₄ CN (70)	193
		1-C3H31	NaNH ₂	NH3	$(i-C_3H_7)_3CCN$ (18), $(i-C_3H_7)_2C=C=NC_3H_{7}$, (14)*	255
		$CH_2 = C(Br)CH_2Br$	n-C ₄ H ₉ Li 78°. Cul 25°		$CH_2 = C(Br)(CH_2)_2 CN$ (92)	48
		н,с-снсн,	LDA		(CH ₃) ₃ SiOCH(CH ₃)(CH ₂) ₂ CN (78)*	180,160
		•	NaNH,	THF, -30°	$HOCH(CH_3)(CH_2)_2CN (-)$	159
		n-C4H9Br	r-C.H.Li	Et ₂ O, THF, -78°	$(n-C_4H_9)_3CCN$ (-)	19
			C10HaNa	THF	n-C ₅ H ₁₁ CN (56)	198
		Cl(CH ₂) ₄ Br	$LiN(C_2H_5)_2$	Et ₂ O	$Cl(CH_2)_{s}CN ()$	549
		$CH_2 = C(CH_2Br)CO_2C_2H_3$	n-C4H9Li, - 78°, Cul, - 25°		$CH_2 = C(CO_2C_2H_3)(CH_2)_2CN$ (89)	48
		n-C ₅ H ₁₁ Br	e ⁻ (8-10 V)	1000 1000	$n - C_6 H_{13} CN$ (42)	113
		Br(CH ₂) ₅ Br	NaNH ₂	NH ₃ , -65°	$NC(CH_2)_7CN$ (60-70)	209
		C ₂ H ₃ OSi(CH ₃) ₂ CH ₂ Br	NaN[S1(CH ₃) ₃] ₂	C ₆ H ₆ , toluene	$C_2H_3OSi(CH_3)_2(CH_2)_2CN$ (-)	218
		$(CH_3O)_2CH(CH_2)_2CI$	NaNH2	NH340 to -60"	$(CH_3O)_2CH(CH_2)_3CN$ (51)	330
			n-C4RoLi, - 10, Cui, -25		$f(C(H_2)_2(C(H_3)) = C(H_2(C(H_3)) = C(21), 2 (40)$	40
		ζ ₀ , ζ(CH ₂) ₂ CI	NaNH,	NH3, -40 to -60°	$\int_{O} \int (CH_2)_3 CN (-)$	550
		n-C _b H ₁₃ Br	e" (8-10 V)		n-C ₇ H ₁₃ CN (41)	113
		\bigcirc	LDA		CH ₂ CN ''OSi(CH ₃) ₃ (75) ⁴	160
		<i>и</i> -C ₂ H ₁₃ Br	LiN(C ₂ H ₅) ₂	HMPA, -70°	n-C ₈ H ₁ ,CN (64), (n-C ₇ H ₁₃) ₂ CHCN (16)	361
		CYCH) CN	NaNH	HMPA	$n - C_8 H_{12} CN (-), (n - C_7 H_{15})_2 CHCN (-)$	551
		(C.H.O).CH(CH.).Cl		NH, - 50°	NC(CH ₂) ₁ CN (80)	209
		C.H.CH.Cl	K.C.	THE -60°	$(C_2 r_3 O_2 C H (C H_2)_3 C N (73)$	552
			1-CAHoLi	Et.O. THE 78	$(C_{+}H_{+}CH_{+})$ (30)	19
		C ₆ H ₃ CH ₂ Br	C10H,Na	THF	(C,H,CH,),CHCN (9), (C,H,CH,),CCN (26)	198
		n-C ₈ H ₁₇ Br	К,С,	THF 60°	n-CoH10CN (55). (n-CaH17), CHCN (7)	552
			K. Al ₂ O ₃		n-C ₀ H ₁₉ CN (54)	553
		n-C ₆ H ₁₃ CHBrCH ₃	K,C,		n-C ₆ H ₁₃ CH(CH ₃)CH ₂ CN (25)	552
		(<i>i</i> -C ₃ H ₇ O) ₂ CH(CH) ₂ Cl	NaNH ₂	NH ₃ 73 to -75°	(i-C ₃ H ₇ O) ₂ CH(CH ₂) ₃ CN (59)	550
		trans-Geranyl bromide	n-C ₄ H ₉ Li, -78°, Cul, -25°	-	CN (92)	48
		(F) CH CI-CHCH B	-			40
		C II D	CH Mach	-		40
C,	C ₂ H ₃ CN	C2H3Br	NoNH.	HMPA, 85°	$CH_3CH(C_2H_3)CN = (62), CH_3C(C_2H_3)_2CN = (20)$	51
			KNH.	NH. ELO	1 (50-50), (1 (12) 11 (57)	555
		C.H.I. (1.5 co)	i-C1H7MgCl (1.0 eq)	HMPA 85°	1 (60) 11 (8)	31
		C, H, I, (2.5 cg)	1-C3H7MgCl (2.0 eq)	*	1 (6) 11 (81)	31
		CICH ₂ CO ₂ Na	NaNH ₂	NH,	HO,CCH,CH(CH,)CO,H (-)*	546
		i-C ₃ H ₇ Br	Li, (C2H3)2NH	CoHo, HMPA, -60°	(I-C3H7)2C(CH3)CN (65)	547
		i-C3H-I	NaNH ₂	NH,	- (59)	255
		n-C ₄ H ₉ Br	NaH	Toluene	n-C ₄ H ₉ CH(CH ₃)CN (23)	42
		C.H.OSi(CH.),CH.Br	NaN[Si(CH ₃) ₃] ₂	C ₄ H ₄ , toluene	C,H,OSi(CH,),CH,CH(CH,)CN ()	68

C4

C,

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
C,	C2H3CN	(CH ₃) ₂ C=CH(CH ₂) ₂ Br	LiN(C ₂ H ₅) ₂	НМРА	(CH ₃) ₂ C=CHCH ₂ CH ₂ CH(C
(Contd.)		C ₆ H ₃ CH ₂ Cl	LICA	THF, -78°	$CH_3CH(CH_2C_6H_3)CN$ (62),
		<u> </u>			<u> </u>
		(CH,),CI	$LiN(C_2H_3)_2$	НМРА	(CH3)3CH(CH3)CN
		C ₆ H ₄ (CH ₂) ₁ Br	LICA	THF, -78°	C.H.(CH2),CH(CH3)CN (6
		C2H3OSO2C6H4CH3-4	i-C3H7MgCl	HMPA, 85°	CH3CH(C2H3)CN (64), CH
		C ₆ H ₃ (CH ₂) ₄ Br	LICA	THF, -78"	C6H3(CH2)4CH(CH3)CN (6
		C ₆ H ₃ (CH ₂) ₂ CH(CH ₃)Br		-	C ₆ H ₃ (CH ₂) ₂ CH(CH ₃)CH(CH
C.	n-C3H2CN	C2H3Br	NaNH ₂	NH,	(C2H3)3CCN (58)
			KNH ₂	NH ₃ , Et ₂ O	" (39)
		C ₂ H ₃ I	NaNH ₂	NH,	" (49)
			i-C ₃ H ₇ MgCl	HMPA, 85°	(C2H3)3CCN (55). (C2H3)2C
	10 11 011	C ₁ H ₃ OSO ₂ C ₆ H ₄ CH ₃ -4	KNU		(C ₂ H ₃) ₃ CCN (75)
	-CHCN		Li (C.H.).NH	NH ₃ , Et ₂ O	$(CH_3)_2C(C_2H_3)CN$ (25)
	n-C3H7CN	Ci(CH1)jbr	LiN(C.H.)	C6H6. HMPA, -00	C2H3CH[(CH2)3CIJCN (3/)
		i-C.H.Br	NaNH,	HMPA NH	(37) C.H.C(C.HA.CN (58)
		1-C3H7I		ing .	" (77)
	I-C,H,CN	Ck(CH ₂) ₃ Br	Li, (C2H3)2NH	C.H., HMPA 60"	(CH,),CI(CH,),CI)CN (75)
			$LiN(C_2H_5)_2$	Et ₂ O	" (73, crude)
	and the second sec	i-C ₃ H ₇ Br	$Li, (C_2H_5)_2NH$	C.H., HMPA, - 60"	(CH3)2C(C3H7-i)CN (69)
	n-C ₃ H ₇ CN	n-C4H9Br	к,с,	THF, -60°	n-C+H+CH(C2H+)CN 1 (54
		- C !! !	KNH2	NH ₃ , Et ₂ O	(n-C4H9)2C(C2H5)CN II (4
		n-C4H91		HMPA, -40'	1 (48), 11 (33)
		(C2H3)2304	NaNH.	HMPA, 85°	(C2H3)2CHCN 1 (56), (C2H
	I-C-H-CN	r-C-H-I	LiN(C,H.).	NH ₃	H (63)
	i-cjiijeit	n-C.H.Br	Li. (C,H.),NH	HMPA, -70°	(CH ₃) ₂ C(C ₄ H ₉ -H)CN (70)
		X(CH ₂) ₄ Br		с ₆ п ₆ . пмгл, -оо	$X(CH_2)_4C(CH_3)_2CN X = CI$ $X = B_4$
		CI(CH ₂) ₄ Br	$LiN(C_2H_3)_2$	Et,O	1 (60)
		CICH ₂ CH(CH ₃)CH ₂ Br	$Li, (C_2H_5)_2NH$	C.H. HMPA 60"	CICH2CH(CH3)CH2C(CH3)2
	ÇN		and the second se		n-C4He CN
	X	n-C ₄ H ₉ Br	NaNH ₂	C.H.	X (-)
	Δ				Δ
	I-C_1H,CN	sec-C3H11Br	Li, (C2H3)2NH	C.H., HMPA 60"	(sec-C.H.,)C(CH.),CN (81)
		(CH ₃) ₂ C=CHCH ₂ Br	$LiN(C_2H_5)_2$	Et ₂ O	(CH ₃) ₂ C=CHCH ₂ C(CH ₃) ₂ C
			(C ₂ H ₃) ₂ NMgBr		* (96)
		$(CH_3)_2C(CH_2Br)_2$	Li, (C ₂ H ₅) ₂ NH	C6H9. HMPA 60"	BrCH2C(CH3)2CH2C(CH3)2C
	n-C ₃ H ₂ CN	(C ₂ H ₃ O) ₂ CHCH ₂ Br	LICA	THF, -78°	(C2H3O)2CHCH2CH(C2H3)C
	ICH CN		Li (C.H.) NH	THF, HMPA, – 78°	CH3COCH(CH3)CH(C2H3)CH
	PC3H7CN	(BrCH-Si(CH-)-1.0	NaN[Si(CH ₁) ₁]	C ₆ H ₆ , HMPA	(C2H3O)2CHCH2C(CH3)2CN
		C.H.,Br	NaNH ₂	Toluene 80'	$(CH_1)_{C}(C,H_1,CN_1,6)$
		n-C,H,Br	LiN(C2H3)2	HMPA60"	(CH ₁) ₂ C(C ₁ H ₁ ,-n)CN (82)
	n-C3H3CN	n-CaH, Br	K, AIO,	THF, -60°	C2H3CH(CH17-n)CN (55)
			LICA, (1.0 eq)	THF, -78°	" ()
			LICA, (2.0 eq)		C2H3C(C8H17-n)2CN (-)
	i-C ₃ H ₇ CN		KNH ₂	NH ₃ , Et ₂ O	(CH ₃) ₂ C(C ₈ H ₁₇ -n)CN (80)
		3,4-(CH ₂ O ₂)C ₆ H ₃ CH ₂ Br			3,4-(CH2O2)C6H3CH2C(CH3)
	6 H 6N	C ₆ H ₅ O(CH ₂) ₂ Br		Et ₂ O	(CH ₃) ₂ C[(CH ₂) ₂ OC _n H ₃]CN
	HC.H.CN	""""""""""""""""""""""""""""""""""""""	" "	HMPA, 85"	(C2H3)2CHCN (75)
	-children	34-(CH-O-)C-H-(CH-) Br	LDA	nmrA, IV	34(CH.O.YC.H.(CH.) C(CH
					$n = 3 (\cdots)$
c.	C.H.CH.CN	C.H.Br	KNH-	NH. ELO	HCH-CCH-CN (89)
- 3	· -Julientent	i-C.H.Br	Li. (C.H.),NH	C.H., HMPA 60"	(I-C ₁ H ₂),CCN (22)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

onditions	Product(s) and Yield(s) (%)	Refs.
	(CH ₃) ₂ C=CHCH ₂ CH ₂ CH(CH ₃)CN (85)	556
0	CH ₃ CH(CH ₂ C ₆ H ₃)CN (62), CH ₃ C(CH ₂ C ₆ H ₃) ₂ CN (12)	537
	(86)	168
	O (CH3)3CH(CH3)CN	
	$C_6H_3(CH_2)_3CH(CH_3)CN$ (65), $[C_6H_3(CH_2)_3]_2C(CH_3)CN$ (32)	537
	$CH_3CH(C_2H_3CN (64), CH_3C(C_2H_3)_2CN (17)$	517
	$C_{6}H_{3}(CH_{2})_{2}CH(CH_{3})CH(CH_{3})CN$ (60), $[C_{6}H_{3}(CH_{2})_{2}CH(CH_{3})]_{2}C(CH_{3})CN$ (10)	537
	(C ₂ H ₃) ₃ CCN (58)	255
e	" (39)	555
		255
	$(C_1H_3)_3CCN$ (55), $(C_1H_3)_3CHCN$ (21)	31
1	$(C_{1}, C_{3}, C_{3},$	555
PA 60°	C,H,CH[(CH ₂),CI]CN (57)	548
0.7	" (57)	193
	C2H3C(C3H7-1)2CN (58)	255
	- (77)	255
PA 60'	(CH ₃) ₂ C[(CH ₂) ₃ CI]CN (75)	548
	" (73, crude)	557
PA 00	$(CH_3)_2C(C_3H_7-1)CN$ (69)	557
	$(n_{1}C_{1}H_{2}) C(C_{1}H_{2}CN_{1}H_{2}(40))$	555
10°	1 (48) 11 (33)	360,361
	(C2H3)2CHCN 1 (56), (C2H3)3CCN 11 (22)	31
	11 (63)	255
70°	(CH ₃) ₂ C(C ₄ H ₉ -n)CN (70)	360,361
PA, -60°	" (78)	547
	$X(CH_2)_4C(CH_3)_2CN$ X = CI I (85) X = Br (55)	548
Selectary .	I (60)	549
PA, -60"	$CICH_2CH(CH_3)CH_2CICH_3)_2CN$ (77)	548
	n-C ₄ H ₉ CN	559
	Δ (-)	558
PA 60"	(sec-C.H.,)C(CH.),CN (81)	547
	$(CH_3)_2C = CHCH_2C(CH_3)_2CN$ (62)	559
	" (96)	559
PA 60"	BrCH ₂ C(CH ₃) ₂ CH ₂ C(CH ₃) ₂ CN (54)	548
	$(C_2H_3O)_2CHCH_2CH(C_2H_3)CN$ ()	165
A, - /8		168
De	[(CH_).C(CN)CH_S(CH_).1.0 ()	218
	$(CH_3)_2C(C_0H_1)CN$ (6)	560
0*	(CH ₃) ₂ C(C ₇ H ₁₃ -n)CN (82)	361
	C ₂ H ₅ CH(C _n H ₁ ,-n)CN (55)	553
	· ()	165
	$C_2H_3C(C_8H_{17}-n)_2CN$ (-)	105
	$(CH_3)_2C(C_8H_{17},H)CN (80)$	555
	$(CH_{1}, CI(CH_{1}, CC, H_{2}, CN) $ (88)	562
	(C ₂ H ₃),CHCN (75)	31
re .	(CH ₃) ₂ C(C ₂ H ₃)CN (74)	31
	3.4-(CH2O2)C6H3(CH2),C(CH3)2CN	561
	n = 3 ()	
	n = 5 (·)	10.01
	$i-C_{3}H_{7}C(C_{2}H_{5})_{2}CN$ (89)	555
A 60°	$(PC_{3}H_{2})_{3}CCN = I (22)$	255
	1 1949 (n. 7114) 7 - C - 10 71141 (17)	200

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

No of					
C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
Cs (Conid.)	i-C ₃ H ₇ CH ₂ CN C ₂ H ₃ CH(CH ₃)CN	Cl(CH ₂) ₃ Br n-C ₃ H ₂ Br	Li, (C ₂ H ₅) ₂ NH NaNH ₂	C ₆ H ₆ , HMPA, -60°	i-C ₃ H ₇ CH[(CH ₂) ₃ Cl]CN (65) C ₂ H ₅ C(CH ₃)(C ₁ H ₇ -n)CN (52)
	I-C3H7CH2CN	Cl(CH ₂) ₄ Br	LiN(C2H3)2	HMPA	1-C3H7CH[(CH2)4CI]CN (61)
	C2H3CH(CH3)CN	n-C4H9Br	NaNH ₂	C ₆ H ₆	C ₁ H ₃ C(CH ₃)(C ₄ H ₉ -n)CN (70)
	and the set of the set	n-C ₃ H ₁₁ Br	NaNH ₂		$C_2H_3C(CH_3)(C_3H_{11}-n)CN$ (68)
	I-C3H,CH2CN	CI(CH ₂) ₆ Br	$LiN(C_2H_5)_2$	НМРА	i-C ₃ H ₇ CH[(CH ₂) ₆ CI]CN (50)
	C ₂ H ₃ CH(CH ₃)CN	R-C6H13Br		- II. III.II.	$C_2H_3C(CH_3)(C_6H_{13}-\pi)CN$ (66)
~	HC3H7CH2CN		N-NU	C6H6, HMPA	1-C3H7CH(CN)[(CH2)2CH(OC2H3)2]CH
C.6	PC4HoCH2CN	САзв	Marving	NH,	1-C4H9C(CH3)2CN (18)
	2-Furylacetonitrile	CH ³ I,	кон	C ₆ H ₆	CH(CH,)CN (26)
					(0) C(CH ₃) ₃ CN (60)
	Pyrazineacetonitrile	СН31	NaNH ₂	NH3, dioxane	(-)
	r-C₄H₀CH₂CN	C ₁ H ₃ Br	-	NH,	C(CH ₃) ₂ CN 1-C ₄ H ₆ C(C ₂ H ₃) ₂ CN (65)
					∧ CN
		CH3OCH2CI	LDA	THF	СУсн2осн, (31)
	Pyrazineacetonitrile	C ₂ H ₃ Br	NaNH2	NH3, dioxane	(-)
	(C2H3)2CHCN	CI(CH ₂) ₃ Br	LIN(C ₂ H ₃) ₂	Et ₂ O	(C ₁ H ₃) ₂ C[(CH ₂) ₃ CI]CN (70)
	I-C4H9CH2CN	1-C3H7I		NH, THF, 0°	1 (60)
	()− ^{CN}	CH ₃ O(CH ₃) ₂ Cl		THF	CN (CH ₂) ₂ OCH ₃ (33)
	2-Furylacetonitrile	n-C ₃ H ₇ I			
					C(C,H,-n),CN II,
					$\left(\int_{O} \int_{CH_2C(NH_2)=C(CN)} \int_{O} \right)$
			КОН	Calla	1 (45), 111 (-)
				Toluene	1 (26), 111 (43)
		-	•	C ₆ H ₆	11 (75)
	Pyrazineacetonitrile	n-C ₃ H ₇ Br	NaNH2	NH3, dioxane	$\binom{N}{CH(C_3H_{3^{-n}})CN}$ (63)
		i-C₃H ₇ Br		•	
	(C ₂ H ₄) ₂ CHCN	CI(CH ₂) ₄ Br	LiN(C ₂ H ₃) ₂	Fi.O	(C.H.).CI(CH.).CI(CN (70)
	(CH ₃) ₃ Si(CH ₂) ₂ CN	(CH ₃) ₃ SiCH ₂ Br (CH ₃) ₃ SiCH ₂ I	Na		[(CH ₃) ₃ SiCH ₂] ₂ CHCN (32) (41)
	+C4H9CH2CN	CH.Br	Li, (C ₂ H ₃) ₂ NH	C ₆ H ₄ , HMPA	(78)
	2-Thienylacetonitrile	(CH3)3N(CH3)3CI	NaNH ₂	NH3, toluene	(2-C4H3S)CH[(CH3)2N(CH3)2]CN (42)
	Pyrazineacetonitrile	n-C4H9Br	+	NH3, dioxane	

i-C3H7CH[(CH2)3CI]CN (65)	548
$C_{1}H_{3}C(CH_{3})(C_{3}H_{7}-n)CN$ (52)	554
i-C3H7CH[(CH2)4CI]CN (61)	193
$C_1H_3C(CH_3)(C_4H_9-n)CN$ (70)	534,554
$C_{2}H_{3}C(CH_{3})(C_{3}H_{11}-n)CN$ (68)	554
i-C3H3CH[(CH2)6CI]CN (50)	193
$C_2H_3C(CH_3)(C_6H_{13}-n)CN$ (66)	554
$i-C_3H_7CH(CN)[(CH_2)_2CH(OC_2H_3)_2]CN$ (80)	168
1-C4H4C(CH1)2CN (78)	255
$\int_{C} L_{CH(CH,XCN}$ (26)	563
CC(H,),CN (60)	563
(N)	
(-) (-)	272
r-C4H4C(C2H3)2CN (65)	255
CH ₂ OCH, ⁽³¹⁾	564
	272
CH(C ₂ H,)CN	272
(C ₁ H ₃) ₂ C[(CH ₂) ₃ Cl]CN (70)	557
$1-C_4H_9CH(C_3H_{7}-i)CN = 1 (43), (1-C_4H_9)(C_3H_{7}-i)C=C=NC_3H_{7}-i (56)^4$	255
1 (60)	565
(CH ₂) ₂ OCH ₃ (33)	564
$l_0 $ $L_{CH(C_3H_7,n)CN}$ I.	
$\int_{O} \mathcal{L}_{C(C_1H_1,n),CN}$ II,	
$\left(\sum_{CH_2(NH_2)=C(CN)} \left(\sum_{O} \right) \right)$ III	
	661
1 (36) 117 (43)	563
11 (75)	563
	505
(N)	
(63) CH(C,Hn)CN	272
(N)	
	272
(C ₂ H ₃) ₂ C[(CH ₂) ₄ Cl]CN (70)	549
[(CH ₃) ₃ SiCH ₂] ₂ CHCN (32)	566
" (41)	566
i-C4H+CH(CN)CH2 (78)	168
(2-C ₄ H ₃ S)CH[(CH ₃) ₂ N(CH ₃) ₂]CN (42)	567
(-)	272
CH(C ₄ H ₉ -n)CN	

Refs.

C Atoms Nucleophile

No. of

C. (Contd.)

C,

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

Nucleophile	Electrophile	Base	Reaction Conditions	
2-Furylacetonitrile	i-C ₅ H ₁₁ Br	кон	C ₆ H ₆	
2-Thienylacetonitrile	(C2H3)2N(CH2)2Cl 1-(2-Chloroethyl)pyrrolidine	NaNH,	NH ₃ , toluene	
	4-(2-Chloroethyl)morpholine	1	•	
Pyrazineacetonitrile	(C ₂ H ₅) ₂ N(CH ₂) ₂ Cl	40	NH3, dioxane	
(C ₂ H ₅) ₂ CHCN	C ₆ H ₃ CH ₃ Cl	C ₆ H ₃ Na	C ₆ H ₆	
Ć) ^{−CN}	C&H3CH3CI	LDA	THF	
2-Furylacetonitrile	C ₆ H ₃ CH ₂ C ^r	кон	C.H.	
		. .		
2. Thienvlacetonitrile	1-(2-Chloroethy))piperidine	NaNH.	NH- toluene	
(C,H,),CHCN	C ₄ H ₄ O(CH ₃) ₃ Br	LiN(C ₂ H ₄) ₂	Et ₂ O	
2-Thienylacetonitrile	(n-C3H7)2N(CH2)2CI	NaNH ₂	NH3, toluene	
	-(N(CH_2)2CI	-	•	
	(CH ₂) ₂ Cl		NH ₃ , toluene	
	(n-CaHo), N(CH2),Cl	-	NH ₃ , toluene	
	C6H3CH2N(CH3)(CH2)2CI		4	
2-Pyridylacetonitrile	C ₂ H ₃ Br	•	Toluene	
3-Pyridylacetonitrile	 C₂H₃Ci	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅) ₃]Cl 50% aq NaOH, [C H CH N/CH CH—CH)]Cl		
4-Pyridylacetonitrile	C2H3Br	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl	-	
ÇN				
\bigcirc	i-C ₃ H ₇ Br	$Li, (C_2H_3)_2NH$	C ₆ H ₆ , HMPA, -60°	
\sim				
	Cl(CH ₂) ₃ Br	LiN(C ₂ H ₅) ₂	С ₆ Н ₆ , НМРА, -60°	
1-Methyl-4-piperidinecarbonitrile	n-C ₃ H ₇ Br	C ₆ H ₃ Na		
2-Pyridylacetonitrile	л-С,Н,СІ	NaNH2	Et ₂ O	
	CH2=CHCH2Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl NaNH3	 Et,O	
	HC≡CCH₂CI	LiNH ₂	NH,	(
4-Pyridylacetonitrile	n-C3H3Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		(

REACTIONS OF NITRILE-STABILIZED CARBANIONS

tions	Product(s) and Yield(s) (%)	Refs.
	$\int_{O} \mathcal{L}_{CH(C_{3}H_{1}, \cdot)CN} $ ⁽¹⁴⁾	563
	(2-C₄H₃S)CH[(CH₂)₂N(C₄H₃)₂]CN (66) (2-C,H₅S)CH(CN)(CH₃)₅N(CH₃)₅ (58)	567 567
	(2-C ₄ H ₃ S)CH(CN)(CH ₂) ₂ N 0 (43)	567
	PN]	
	N CHI(CH.), N(C.H.), JCN	2/2
	$(C_2H_3)_2C(CH_2C_6H_3)CN$ (71)	50
	∧ ^{CN}	
	()-CH ₂ C ₆ H ₅ (61)	564
	(26)	563
	CICH.C.H.J.CN (6)	563
	(2-C_H_S)CH(CN)(CH_), N(CH_), (60)	567
	$(C_2H_3)_2C[(CH_2)_2OC_6H_3]CN$ (75)	562
	$(2-C_4H_3S)CH[(CH_2)_2N(C_3H_{7}-n)_2]CN$ (51)	567
	(2-C ₄ H ₃ S)CH(CN)(CH ₃) ₂ N (55)	567
	\succ	
	(2-C4H3S)CH(CN)(CH3)3N (37)	567
	(2-C ₄ H ₃ S)CH[(CH ₂) ₂ N(C ₄ H ₉ -n) ₂]CN (53)	567
	(2-C ₄ H ₃ S)CH[(CH ₂) ₂ N(CH ₃)CH ₂ C ₆ H ₃]CN (41)	568
	$(2-C_3H_4N)CH(C_2H_3)CN$ (69)	377
	(3-C ₅ H ₄ N)CH(C ₂ H ₅)CN (46)	570
	(4-C.H.N)CH(C.H.)CN (69)	560
	FC3H7 CN	
- 60°	(85)	547
	CI(CH ₂), CN	
- 60°	(67)	548
	(62)	571
	L CH,	
	$(2-C_3H_4N)C(C_3H_{3}-n)_2CN$ (70)	572
	(2-C ₃ H ₄ N)C(C ₃ H ₇ -i) ₂ CN (47)	572
	$(2-C_3H_4N)CH(CH_2CH=CH_2)CN$ (79)	569
	$(2-C_{3}H_{4}N)C(CH_{3}CH_{2}-CH_{3}CN_{4}(02))$	572
	(4-C ₃ H ₄ N)CH(C ₃ H ₇ -n)CN (67)	569

C.

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Basc	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
с,	4-Pyridylacetonitrile	CH2=CHCH2CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		(4-C ₃ H ₄ N)C(CH ₂ CH=CH ₂) ₂ CN (39)	569
(Contd.)	n-C4HoCH(CH3)CN	CI(CH ₂) ₄ Br	Li, (C ₂ H ₃) ₂ NH	C ₆ H ₆ , HMPA, -60°	n-C ₄ H ₉ C(CH ₃)[(CH ₂) ₄ Cl]CN (90)	548
	(CH3)33(CH2)3CN	(CH ₃) ₃ SICH ₂ I	Na	El ₂ O	(CH ₃) ₃ SI(CH ₂) ₂ CH[CH ₂ SI(CH ₃) ₃]CN (33)	200
	L'N	— 9				
	\frown	11	Li. (C2H3)2NH	C.H. HMPA	(67)	168
	\bigcup	O CH ₂ Br			\sim \bigcirc	
	2-Pyridylacetonitrile	I-C.H.CI	NaNH-	FL-O	(2-C.H.N)C(C.H()-CN (68)	572
		(CH3)2N(CH2)2CI			$(2-C_{3}H_{4}N)C[(CH_{2})_{2}N(CH_{3})_{2}]_{2}CN$ (25)	572
	4-Pyridylacetonitrile	n-C ₄ H ₉ Br	50% aq NaOH, [C.H.CH2N(C2H3)]CI		$(4-C_3H_4N)CH(C_4H_9-n)CN$ (66)	569
	2. Pyridylacetonitrile		NaNH	F. O	$(4-C_3H_4N)CH(C_4H_{9}-i)CN (55)$	569
	CN	regulier	Halling.	610		572
	1				(C ₂ H ₃ O) ₂ CHCH ₂ CN	
	\cap	(C2H3O)2CHCH2Br	Li, (C ₂ H ₅) ₂ NH	C.H., HMPA	(84)	168
		\frown			· ^	
	CH ₃ CH=CH(CH ₂) ₃ CN		LDA	THF, HMPA	(ca. 50)	222
		O O(CH ₂) ₂ Br			$CH_3CH=CH(CH_2)_2CH(CN)(CH_2)_2O$	
	ÇN				C.H.CH2 CN	
		C.H.CH.CI		-	X	574
	\sim				\sim	
					(C ₆ H ₃ O) ₂ CH(CH ₂) ₂ CN	
		(C ₂ H ₃ O) ₂ CH(CH ₂) ₂ Cl	Li, (C2H2)2NH	CeHe. HMPA	(75)	168
					\bigcup	
	2-Pyridylacetonitrile	C6H3CH2CI	NaNH,	Et.O	(2-C.H.N)CH(CH.C.H.)CN (43)	575
					$(2-C_3H_4N)C(CH_2C_6H_3)_2CN = 1$ (46)	
					I (60)	572
		40.NC.H.CH.CI	NaNH.		$(2-C_3H_4N)CH(CH_2C_6H_5)CN$ (84)	309,311,313
	4-Pyridylacetonitrile	C.H.CH.CI	50% aq NaOH. [C.H.CH.N(C.H.),]CI	El ₂ O	$(2-C_3H_4N)C(CH_2C_6H_4NO_2-4)_2CN (43)$	572
	2-Pyridylacetonitrile	"-C.H. OH"	Na, CH ₃ CO ₂ C H ₁₇ -n	2	$(2 - C_3 + 1) C + (C_1 + 1) C + (2 + 1) $	314
		-	Na, C6H3CO2CH3		" (84)"	312
	3-Pyridylacetonitrile	Ar(CH ₂) ₂ Br	NaH		(3-C ₅ H ₄ N)CH[(CH ₂) ₂ Ar]CN 1	7.50
			-	DMF, toluene	$I, Ar = C_6H_5 (-)$	576
					$I, Ar = 3-CIC_6H_4 (-)$	576
	3. Puridulacetonitrile	ACH CH (CH) B.	-		$I_{1} Ar = 4 - CIC_{6}H_{4} (-)$	576
	5-r yndylacetomune	C.H.(CH.)-Cl		DMF, toluene	$(3-C_3H_4N)CH[(CH_2)_2C_6H_4CH_3-4]CN (-)$	576
		4-(CH_)-NC_H_CH_CI	÷ 0	DME	$(3-C_3H_4N)CH[(CH_2)_3C_6H_3]CN (-)$	576
		CH,CI		DMP	$(J-C_3 n_4 n_1 C n_1 C n_2 C n_4 n_1 (C n_3)_2 \cdot n_2 C n_4 (-)$	342
		a d				
	2-Pyridylacetonitrile	F T J	NaNH,	C H		976
		N	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Calla		020
		CH,CI			CH ₂ CH(C ₁ H ₄ N-2)CN	
		\sim				
			•		(83)	826
		N			N	
		ð			ð	
C.	(i-C3H7)2CHCN	CH ₃ Br	NaNH ₂	NH,	(i-C ₃ H ₇) ₂ C(CH ₃)CN (81)	255
	C.H.CH.CN	CHJI	LDA	THF. 0°	" (100)	565
	engenzen	СН,СІ	50% ag NaOH, [C.H.CH.N(C.H.).]CI		$C_6H_3CH(CH_3)CN$ I, $C_6H_5C(CH_3)_2CN$ II	44
			10 /8 mg insom [consentingerish] jei	-	·· (-)	00

81

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS	OF	NITRILE-STABILIZED	CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
c.	C ₆ H ₃ CH ₂ CN	CH ₃ Br	•		1 (55)	65,577
(Contd.)			NaOH	Aq DMSO	1 (79), 11 (8)	96
		CH31		C ₆ H ₆	1 (46)	578
		•	50% aq NaOH, (C2H3O)2POCH2SC6H3	-	1 (66), 11 (28)	579
		-	I-C4H9OK	I-C4HOH	1 (52)	580
			(n-C4H9)4NOH	Aq CH2Cl2 or CHCl3	1 (72), ¹ 11 (14) ¹	80
			NaNH ₂	El ₂ O	I (54), II (11)	161
				NH3. Et2O	1 (58), 11 (14)	162
				Tolucne	1 (62), 11 (16)	162
			•	NH3, Et2O	1 (89)	581
		•	•	C.H.	1 (87)	580
			KNH ₂	NH ₃ , Et ₂ O	1 (50), 11 (19)	161
			LICA	THF, -78°	1 (70), 11 (30)	537
			C10H ₈ Na	THF	1 (46)	198
			CH ₁ Li	Et.O. THF 100°	11 (95)	44
		-	K,C,	THE - 60°	1 (60) 11 (6)	552
		CH ₂ Cl ₂	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl or [CH3=CHCH2N(C2H3)3]Cl	-	[C ₆ H ₅ CH(CN)] ₂ CH ₂ (80)	70,582
	2-CIC,H,CH,CN	CH3F	NaNH ₂	CAHA	2-CIC_H_C(CH_),CN (12)	583
	3-CIC6H4CH2CN		5. C.		3-CIC.H.C(CH.),CN (23)	583
	4-CICAHACH2CN	-	r-C ₃ H ₁₁ ONa	-	4-CIC+H-C(CH-)-CN (89)	584
		-	NaH	Toluene	4-CIC-H-CH(CH-)CN (51)	585
	2.4-CI-C.H.CH-CN	-		-	24-CLC.H.CH(CH.)CN ()	585
	2.5-CI-C.H.CH.CN				25-CLC.H.CH(CH.)CN (-)	585
	26-CI-C-H-CH-CN		•		26 CLC H CH(CH)CN (SI)	505
	34-CLC.H.CH.CN		•			565
	236-CI-C.H.CH.CN	-	•			505
	4-O.NC.H.CH.CN	CICN	•	THE	4.0 NC H CH(CN) (70)	586 597
	-AZCN	СН²СІ	NaNH2	Toluene	CH, (32) + CCONH, (-)	588
	A	Сн,і		C ₆ H ₆		177
		Сн,сі	<u>,</u>	NH3	CN (41, 1:11 = 85:15) 1 (37)	588
	E CN		-		1 (77)	588
	(I-C3H7)2CHCN	C ₂ H ₃ Br		NH,	(i-C,H_)-C(C,H_)CN (78)	255
	CAHACHACN	(CH ₃) ₂ SO ₄			C.H.CH(CH)CN LC.H.C(CH)-CN II	
		10 - Mar 0-	кон	DMF	[(-)	203
			NaNH ₂	NH. ELO	1 (80)	589
			•	C.H.	1 (82)	290
	(I-C1H7),CHCN	C2H3I	LDA	THF. 0°	(I-C.H.)-C(C.H.)CN (97)	646
	C.H.CH.CN	C,H,CI			C.H.CH(C.H.YCN I C.H.C/C.H.Y.CN II	565
		2.4 - A.V.	50% aq NaOH, [C,H,CH2N(C2H3)]CI		1 (88)	66.69
			NaNH ₂	Fr.O	11 (-)	600
		C,H,Br	LiH	C.H.	1 (30)	\$79
			NaOH	NH.	1 (76)	290 501
			Chef Line and Chef			207,391

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
с,	C,H,CH,CN	C2H3Br	50% aq NaOH,			
(Contd.)			2% N C ₃ H ₃)C ₆ H ₁₃ -n		1 (90), 11 (3)	592
		1.1	ćн,			
			50% aq NaOH, [C4H3CH3N(C2H3)]CI		1 (90)	68,85,98,577
			50% aq NaOH, (n-C4H9)3N		1 (100)	593
			NOU KOU		1 (65)	504
			(CH) NOH	An CH CL on CHCI	1 (100)	90
		-	NoNH.	C.H.	1 (100)	290 595
				Calle	Π (-)	583
			-	Toluene	1 (92)	596
		-		NH.	1 (69-70)	597
	CaHsCH, MCN		•	Et,O	C.H.CH(C.H.)14CN (89)	598
	C6H3CD2CN		NaH	DMF, C.H.	C.H.CD(C.H.)CN (80)	385
	C6H3CH2CN	C ₂ H ₅ I	Aq NaOH, (n-C+H9)+NI		1 (90)	227
			I-C4HOK	r-C+H,OH	1 (64)	580
			NaNH ₂	Et ₂ O	1 (62-84)	599
		-	-	C ₆ H ₆	I (80–85)	580
			Mg	NH3, Et2O	1 (42)	600
			n-C4H9MgBr	HMPA, 80°	1 (80), 11 (2)	31
		and the second	C10HaMg	Et ₂ O	1 (35)	601
		C2H3OH	Na, CH ₃ CO ₂ C ₂ H ₅	-	1 (63)	314
		Contraction Contraction	Na, C ₆ H ₃ CO ₂ CH ₃	-	1 (63)*	312
		CH3OCH2CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$C_6H_3CH(CN)CH_2CH(CN)C_6H_5$ (-)	72
					$C_6H_3C(CH_2OCH_3)(CN)CH_2CH(CN)C_6H_3$ (68)	12
		CICH ₂ CN	NaNH ₂	NH ₃ , El ₂ O	$C_6H_5CH(CH_2CN)CN$ I (41), $C_6H_5C(CH_2CN)_2CN$ II (ca. 9)	602
			50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		1 (ca. 70)	15
		CICIL CO NI-	NaNH ₂	Cene NH		603
	A CIC II CH CH	CICH ₁ CO ₂ Na		C H	$C_{6} H_{3} CH(CH_{2} CO_{2} H) CN (22)$	592
	+cic6n4cn1ch	C2H3BI		E: O	" (79)	604
	4.BrC.H.CH.CN		-	C.H.	4-BrC.H.CH(C.H.)CN (-)	595
	4-H3NC4H4CH3CN			Et ₂ O	4-H2NC6H4C(C2H3)2CN (40), 4-H2NC6H4CH(C2H3)CN (9),	605
					$4[(C_2H_3)_2N]C_6H_4C(C_2H_3)_2CN$ (12)	
	4-XC.H.CH.CN	CICH ₂ CN	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		4-XC ₆ H ₄ C(CH ₂ CN) ₂ CN 1	75
					1 X = H (41)	
					X = F (36)	
					X = CI (83)	
					$\mathbf{X} = \mathbf{Br} (81)$	
					X = I (79)	
	٨				٨	
			NI-NIT	Same and the second		
		C ₂ H ₃ Br	Narra 2	NH ₃ , toluene	LC, H, (66)	588
	-N				L.	
	CN		1101		CN	
		C ₂ H ₃ I	LICA	THF, -78°	* (85)	178
	(I-C3H7)2CHCN	I-C_JH-Br		NH,	$(I-C_3H_7)_3CCN \ I \ (33), (I-C_3H_7)_2C=C=NC_3H_7-I \ II \ (25)^4$	255
		1-C3R71	LINA		I (39), II (26) ⁴	255
			NaNH.	THF, 0°	I (70), II (23)	565
			KNH.	NH,	1 (37-50), 11 (23-25)	255
	C.H.CH.CN	n-C.H.CI	50% ag NaOH, [C.H.CH.N(C.H.), 1Cl			255
					€6∩3€П(€3П7*Л)€N I, €6П3€(€3П7*Л)2€N II I (66)	606 98
		n-C3H3Br	LiH	C.H.	1 (45)	578
			NaOH	Ag DMSO	L (75) II (13)	96
			50% aq NaOH, [C6H3CH2N(C2H4)3]Cl	-	I (78)	65,68
			NaNH ₂	C.H.	I (88)	290,595,607
			1. C. I. C.		11 (41)	583

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoma Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C. C.H.CH.CN	n-C,H-Br	NaNH,		1 (64)	597
(Contd.)			NH3, Et2O	I (69), II (14)	162
a constant and a	•	Mg	NH,	1 (57)	608
		CioHaNa	THF	1 (-)	198
	n-C3H7I	I-C.H.OK	r-C₄H₀OH	1 (45)	580
		NaNH ₂		1 (70)	609
	n-C3H,OH	Na, CH ₃ CO ₂ C ₃ H ₇ -n		1 (72)*	314
		Na, CoH,CO2CH,	44.1	I (61) ^e	312
	i-C3H2Cl	50% aq NaOH. [C.H.CH2N(C2H3)]Cl		$C_6H_5CH(C_3H_7-i)CN$ I, $C_6H_5C(C_3H_7-i)_2CN$ II	
			-	1 (2)	68
	I-C3H3Br			1 (ca. 80)	610,65,68
	•	50% aq NaOH.			
				I (23)	592
		N N(C2H3)C16H33-# BF4 CH3			
		NaNH.	Toluene or C H	1 (76) 11 (7)	162 539 607
			Tolucie of Cone	. (611
	- C+	-	NH. FLO	1 (90) 11 (7)	162
	-	LICA	THE -78°	I (75) II (16)	537
		K.C.	THE - 60°	L (58) II (6)	552
	i-C3H31	(n-CAHo)ANOH	An CH-CI- or CHCI-	1 (75)	80
		NaNH,	ELO	1 (-) 11 ()	612
	-	Mg	NH.	1 (69)	608
	í-C,H,OH	Na, CH3CO2C3H7-i		1 (57)*	314
		Na, CoH, CO2CH,	-	1 (57)*	312
	CH2=CHCH2CI	~		C ₆ H ₅ CH(CH ₂ CH=CH ₂)CN 1, C ₆ H ₅ C(CH ₂ CH=CH ₂) ₂ CN 1	
		кон. С ₆ H,CH, ⁻ С ₂ H, Cl ⁻	Aq C₂H₃OH	1 (90)	570
		KOH, [CAHACHAN(CAHA)AICI	-	I (89)	606
	CH1=CHCH1CI	NaH	DMSO	11 (92)	204
		NaNH ₂	C.H.	1 (-)	595
	CH ₂ =CHCH ₂ Br	50% aq NaOH.		1 (63), 11 (34)	592
		3% N(C2H3)C16H33-7			
					Sec. 1
	CH ₂ =CHCH ₂ Br or CH ₂ =CHCH ₂ Cl	50% aq NaOH. [C6H3CH2N(C2H3)3]Cl		1 (60)	577
		LICA	THF, - 78°	1 (70), 11 (26)	537
	HC=CCH CI	Mg	NH,		608
		LINH ₂	NH,	$C_{4}H_{3}C(CH_{2}C=CH)_{2}CN I (44)$	573
	CKCH) C		Et20, CeHe	$C_{4}H_{3}CH(CH_{2}C=CH)CN$ (30), 1 (70)	013
	CI(CH2)JCI	1 N/C U)	-	" (01)	557
	CKCH) B-	An NaCH (=C H) NI		" (05)	227
	CI(CH2)JDr	NoNU North	C.H. or toluene	" (-)	595.614
	CI(CH ₂) ₃ I	50% aq NaOH, [(CaH4CH3);N(C3H4)3];SO4	-	· (−)	615
	Br(CH ₂) ₃ Br	50% aq NaOH, [C.H.CH,N(C.H.),]CI	C + 1	C ₄ H ₃ CH[(CH ₃) ₃ Br]CN (20)	70
		Aq NaOH, (n-C4H9)4NI	-	[C ₆ H ₃ CH(CN)CH ₂] ₂ CH ₂ (96)	227
	CH3OCH(CH3)Cl	50% aq NaOH. [C.H.CH2N(C2H3)]CI	-	[C,H,CH(CN)],CHCH, (70)	72
	CICH2CO2CH3	NaNH ₂	CaHa	$C_6H_3C(CH_2CO_2CH_3)_2CN$ (12)	603
	BrCH(CH ₃)CO ₂ Na		NH,	$C_4H_5CH[CH(CH_3)CO_3H]CN$ (-)	546
	Br(CH ₂) ₂ CN	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$C_6H_3C(CH_2CH_2CN)_2CN$ ()	73
4-CIC ₆ H ₄ CH ₂ CN	i-C ₃ H ₇ Br			4-CIC ₆ H ₄ CH(C ₃ H ₇ -4)CN (91)	610,616
	i-C3H2CI	50% aq NaOH, [(n-C4H9)4N]Cl		" (89-93)	617

No. of C Atoms

C. (Contd.)

URGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
4-CIC ₆ H ₄ CH ₂ CN	i-C3H2CI	кон	-	" (98)	617.618
KC6H4CH2CN	Br(CH ₂) ₃ Cl			XC ₆ H ₄ CH[(CH ₂) ₃ CI]CN	
		NaNH ₂	÷	X = 4 - C1 (-)	614
				X = 3 - C1 (-)	614
			-	$\mathbf{X} = 2 \cdot \mathbf{C} \mathbf{I} (-)$	614
H NC H CH CN	CH B		E.O.	A = 4 - F (-)	014
nincenecular	N-C3H3BI		240	$4/n_{1}$, H_{1} , H_{2} , H_{1} ,	005
	I-C3H3Br		•	$4+H_2NC_6H_4CH(C_3H_7+i)CN (3), 4+H_2NC_6H_4C(C_3H_7+i)_2CN (30), 4+iC_7H_7NC_6H_4CH(C_1H_7+i)_2CN (20)$	605
	CH,=CHCH,Br			4H,NC,H,C(CH,CH=CH,),CN 1 (61)	619
				1 (62), 4 -H ₂ NC ₆ H ₄ CH(CH ₂ CH=CH ₂)CN (5), 4-((CH ₂ =CHCH ₂) ₂ N)C ₆ H ₄ C(CH ₂ CH=CH ₂) ₂ CN (8)	605
D	n-C3H7Br'	4	NH ₃ , toluene	$\prod_{R} I_{R} = C_{3}H_{7} n (79)$	620
- En				CN	
٨	i-C ₃ H ₇ Br			$A = C_3 H_{7} - i (63)$	620
17 _{CN}	CH2=CHCH2Br	-	C ₆ H ₆		177
٨				(17, 1:11 = 86:14)	
IZ	1.50		NH ₃ , toluene	I (42)	620
ĆN				\sim	
CHICN	CH2=CHCH2CI	50% aq NaOH, [C6H3CH3N(C2H3)3]Cl	-	(86) CH(CH,CH=CH,)CN	569
C ₃ H ₇) ₂ CHCN	i-C4H9Br	KNH ₂	NH3, -	(i-C3H7)2C(C4H9-i)CN (84)	255
	(CH ₃) ₂ N(CH ₂) ₂ Cl	NaNH ₂	NH3, Et2O	$(i-C_3H_7)_2C[(CH_2)_2N(CH_3)_2]CN (-)$	621
H ₃ CH ₂ CN	n-C4H9Cl			$C_6H_5CH(C_4H_9-n)CN$ I, $C_6H_5C(C_4H_9-n)_2CN$ II	
		NaOH	Aq DMSO	1 (62), 11 (8)	96
		50% aq NaOH, [C6H3CH2N(C2H5)3]CI		I (17)	68
	n-C4H9Br	NaH	DME	I (73), II (9)	162
		LIH	C ₆ H ₆	I (4)	578
		SON an NaOH Dower LVR (triphere)	DMF	I (-)	203
		50% an NaOH (=C H) NBr	-	I (8.5-84), II (3-7)	99,622
		50% aq NaON, (1-C4N9)4(10)	-	1 (35-86), 11 (1-11)	99,622
		50% an NaOH	THF, -60°	I (67), II (3)	552
		BF. N(C2H3)C16H33-#		1 (0),11 (0)	392
		50% aq KOH, (n-C.H.),N or	110°	I (87-97)	623
		(n-C4H9)4NI 50% aq NaOH, [C4H3N(CH3)3]Br or [C4H4CH3N(CH3)3]Br	-	1 (-),11 (-)	528
		50% ag NaOH (no catalyst)	-	I (ca. 70)	92
		50% ag NaOH, [C.H.CH.N(C.H.),]CI	1.2	1 (74)	65.68
	•	NaNH,	Toluene	1 (82), 11 (5)	162
			NH,	1 (63-69)	597,624
		• • • • • • • • • • • • • • • • • • •	NH3, Et2O	I (60-77), II (5-13)	162
		CHII	THE 250	1 (17) 11 (69-60)	47 46

No. of C Atoms

C. (Contd.)

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C,H,CH,CN	n-C₄H₀Br	n-C4H9Li	THF	1 (73)	46
	n-C4H9OH"	Na, CH ₃ CO ₂ C ₄ H ₉ -n		1 (75)*	314
	n-C4H9I	NaH	НМРА	1 (86), 11 ()	625
		I-CAHOK NoNH	I-C4HOH	1 (39)	580
	sec-C. H.Br	Nainn ₂	C ₆ H ₆		580,290,607
			NH. FLO	$C_{6}n_{5}Cn(C_{4}n_{9}-sec)CN = 1, C_{6}n_{5}C(C_{4}n_{9}-sec)_{2}CN = 11$	162
		•	C.H.	I (86)	290,607,626.
					627
			Toluene	I (58), II (some?)	162
	•	NajO	-	1 (-)	734
		50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	1 (63)	65,68
	sec-C4H9OH'	Na, CH ₃ CO ₂ C ₄ H ₉ -sec		1 (38)*	314
	I-CaHaBr	Nell	7.1	$C_6H_3CH(C_4H_9-i)CN$ I, $C_6H_3C(C_4H_9-i)_2CN$ II	***
		50% an NaOH [C.H.CH.N(C.H.).]C)	loluene	1 (66)	539
		NaNH.	NH. FLO	1 (47) 1 (46) 11 (23)	162
	i-C.H.OH"	Na, CH1CO2C4Ha-i		1 (68)	314
	CH ₃ CHBr(CH ₂) ₂ Br	Aq NaOH, cat (n-CaHa)aNI		C ₆ H ₁ CH[(CH ₂) ₂ CHBrCH ₃]CN (91)	227
	(C2H3)2SO4	n-C4H9MgBr	HMPA, 80°	C,H,CH(C2H,)CN (51), C,H,C(C1H,)2CN (14)	31
	CI(CH ₂) ₃ CN	50% aq NaOH, [C.H.CH2N(C2H3)3]Cl		C ₆ H ₅ CH[(CH ₂) ₅ CN]CN (-)	73
	CICH ₂ CH(CH ₃)CN			C ₆ H ₃ C[CH ₃ CH(CH ₃)CN] ₂ CN (16)	73
	(CH ₃) ₂ N(CH ₂) ₂ Cl	NaNH ₂	Et ₂ O	$C_6H_5CH[(CH_2)_2N(CH_3)_2]CN$ (-)	628
	CH ₃ CO ₂ (CH ₂) ₂ Cl		Dioxane	C ₆ H ₃ CH[(CH ₂) ₂ OCOCH ₃]CN (80)	341
	CICH ₂ CO ₂ C ₂ H ₃	14.	C ₆ H ₆	$C_6H_5C(CH_2CO_2C_2H_5)_2CN$ (35)	603
		Mg K.CO. 18-crown-6	NH,	$C_6H_5CH(CH_2CO_2C_2H_5)CN$ (34)	608
4-H-NC-H-CH-CN	a-C.H.Br	NaNH.	120°		304
	i-C ₄ H ₉ Br		-	$4+(n-C_4H_9)_2NC_6H_4C(C_4H_9,n)_2CN (5)$ $4+(n-C_4H_9)_2NC_6H_4C(C_4H_9,n)_2CN (5)$	605
dy la	n-C ₄ H ₉ Br				
ČN				CN R	
	-		NH,, toluene	$I_{R} = n - C_{a} H_{a}$ (67)	620
A					
47			C.H.	$I + II, R = C_4 H_9 \cdot n$ (75, 87:13 = 1:11)	177
ZN					
	-CH.K	1104	THE 100		170
	(CH_)-N(CH_)-CI	NaNH-	NH, tolucas	$f = (CH_{a}) \cdot N(CH_{a}) = (40)$	620
(I-C ₃ H ₇) ₂ CHCN C ₆ H ₃ CH ₂ CN	". ". ".		-	$i, \kappa = (c-\pi_3)_2 (c(c-\pi_3)_2 (c(t-1)_3)_2 $	629
		50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	1 (13)	68
	n-C3H11Br			1 (72)	65,68
		NaNH ₂	NH3, Et2O	1 (81), 11 (8)	162
			C.H.	1 (-)	607
	#-CsH11OH	Na, CH3CO2C5H11-#	-	1 (67)*	314
	PC3H11BC	SOY as NOH IC. H.CH.NC. H.J. CI		$C_6H_5CH(C_5H_{11}-i)CN$ I, $C_6H_5C(C_5H_{11}-i)_2CN$ II	
	-	NaNH,	NU	1 (50)	03,08
	· · · · · · · · · · · · · · · · · · ·		NH. FLO	I (70) II (8)	167
	1-C,H,OH*	Na, CH3CO2C3H11-1	-	1 (72)	314
	CH,CHBrC,H,-/	NaNH2	C.H.	$C_{A}H_{A}CH[CH(CH_{A})C_{A}H_{2}-i]CN$ (-)	627
	CH ₃ CH=CHCH(CH ₃)Cl	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		C,H,CH[CH(CH))CH=CHCH]]CN (96)	65,68
	ľ			CH(C ₆ H ₅)CN	
	\cap	кон	DMF	∧ (-)	203

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield	
C,H,CH,CN	Br				
	\bigcirc	NaNH ₂	Et ₂ O	" (85-90)	
	т Сі		Xylene	" (41) CH(C4H4)CN	
	$\langle \rangle$	-	Toluene	(5	
	CI(CH ₂) ₅ CI (CH ₃) ₂ N(CH ₂) ₅ CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl NaNH3	с.н.	C ₆ H ₅ CH[(CH ₂) ₅ Cl] C ₆ H ₅ CH[(CH ₂) ₅ Cl]	
	(CH ₃) ₂ NCH ₂ CH(CH ₃)Cl	•	Toluene	C ₆ H ₃ CH[CH(CH ₃) C ₆ H ₃ CH[CH ₂ CH	
	Br(CH ₂) ₂ C(CH ₃) ₂ NO ₂ CH ₃ CHBrCO ₂ C ₂ H ₃ BrCH ₃ CO ₂ C ₃ H ₂ -i	50% aq NaOH, [C4H3CH2N(C2H3)]Cl Mg 40% aq NaOH, [C4H4CH3N(C3H4)3]Cl	NH,	C ₆ H ₃ CH[(CH ₂) ₂ C(C C ₆ H ₃ CH[CH(CH ₃) C ₆ H ₄ CH[CH(CH ₃ CO ₃ C	
	2-(Chloromethyl)furan	NaH	C.H.	C ₆ H ₃ C[CH ₂ CO ₂ C (2-C ₄ H ₃ O)CH ₂ CH(C	
4-CIC ₆ H ₄ CH ₂ CN	-	NaNH2	1	(2-C4H3O)CH2CH(((-)	
d'	n-C ₅ H ₁₁ Br ^e	÷	NH3, toluene	E C,H	
ĊN				ČN A	
	ŀCsH11Br			E C.H.	
n-C4H9CH(C2H3)CN C6H3CH2CN	(C2H3O)2CHCH2Br n-C6H13Br	Li, (C2H3)2NH Aq NaOH, (n-C4H9)4NI	C ₆ H ₆ , HMPA	CN n-C4H9C(C2H3)[CH C4H3CH(C4H33-n)C	
		50% aq NaOH, [CeH3CH2N(C2H3)3]Cl NaNH3	Toluene or C.H.	" (85) " (79)	
	<i>n</i> -C ₆ H ₁₃ OH*	Na, CH, CO ₂ C ₄ H ₁₃ -n Na, C ₄ H ₄ CO ₂ CH,	-	" (70)* " (70)*	
	Br(CH ₂) ₆ Br	Aq NaOH, (n-C4H,)4NI	-	C ₆ H ₃ CH[(CH ₂) ₆ Br]([C ₆ H ₃ CH(CN)(CH ₂)	
	(C ₂ H ₃) ₂ N(CH ₂) ₂ Cl	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl KOH	DMF	C ₆ H ₃ CH[(CH ₂) ₂ N(C " (-)	
			THE	- (64)	
	•		Et ₂ O	- (-)	
	4-(2-Chloroethyl)morpholine	÷	C.H.	C ₆ H ₃ CH(CN)(CH ₂) ₂	
			Et ₂ O	• (–)	
	Br(CH ₂) ₃ CN (C ₂ H ₃ O) ₂ CHCH ₂ Br BrCH ₂ CO ₂ C ₄ H ₉ -1	NaNH ₂ " 40% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₅]Cl	Et ₂ O	C ₆ H ₃ CH[(CH ₂) ₃ CN] C ₆ H ₆ CH[CH ₂ CH(O C ₆ H ₄ CH[CH ₂ CO ₃ C,	
	C ₆ H ₁₁ Cl C ₆ H ₁₁ Br	KOH Nanh,	DMF NH3, Et2O	C ₆ H ₃ C(C ₆ H ₁₁) ₂ CN C ₆ H ₃ CH(C ₆ H ₁₁) ₂ CN	
			Toluene Xviene	1 (65-77), 11 (some 1 (62)	
		Na G. U. No	Toluene	I (54)	
	C _e H ₁₁ C _e H ₁₁ OH	CioriaNa Na, CH3CO3CaH11 Na, CaH3CO2CH3	THF 	I (61) I (57)* I (65)*	

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

Product(s) and Yield(s) (%)	Refs.
" (85-90)	630
·· (41)	631
CH(C ₆ H ₃)CN	
(55)	339
$C_6H_5CH[(CH_2)_5CI]CN (-)$	70
$C_6H_5CH[(CH_2)_3N(CH_3)_2]CN$ (62)	632
$C_0H_0CH[CH(CH_0)CH_0N(CH_0)_2]CN (-),$	633
$C_6H_5CH[CH_2CH(CH_3)N(CH_3)_2]CN$ (-)	74
$C_{H}CH[CH](CH_{1/2}C(CH_{1/2}NO_{2}]CH_{(21)})$	608
C_H $CH[CH_CO_C_H_DCN_(-)]$	77
CAH.CICH.CO.C.H	
(2-C ₄ H ₃ O)CH ₂ CH(C ₄ H ₃)CN	634
(2-C4H3O)CH2CH(C6H4CI-4)CN (96)	634
• (−)	635
٨	
FA	
(66)	620
Actual and	
CN	
Δ	
	(20)
C3H11-1 (03)	620
CN	
$n-C_4H_9C(C_2H_5)[CH_2CH(OC_2H_5)_2]CN (73)$	168
$C_6H_5CH(C_6H_{13}-n)CN$ (94)	221
(83)	290 611 607
" (70) "	314
" (70)"	312
C ₄ H ₄ CH[(CH ₂) ₆ Br]CN (85)	227
[C ₆ H ₃ CH(CN)(CH ₂) ₃] ₂ (87)	227
$C_{6}H_{5}CH[(CH_{2})_{2}N(C_{2}H_{5})_{2}]CN(-)$	65
• ()	203
" (64)	198
" (-)	69
· (-)	628
\frown	
$C_{4}H_{3}CH(CN)(CH_{2})_{2}N$ (80)	632
· (-)	628
C.H.CHI(CH.).CNICN (-)	636
$C_{A}H_{A}CH[CH_{A}CH(OC_{A}H_{A})_{A}]CN$ (-)	637,638
C.H.CH[CH2CO2C4He-1]CN (-), C.H.C[CH2CO2C4He-1]2CN (-)	77
$C_{6}H_{5}C(C_{6}H_{11})_{2}CN(-)$	203
C6H3CH(C6H11)CN I (37), C6H3C(C6H11)2CN II (4)	162
I (65-77), II (some?)	162,639
1 (62)	631
I (54)	640
I (61)	198
1 (57)*	314
1 (63)*	312

No. of C Atoms

C.

(Contd.)

93

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

95

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C,	C ₆ H ₃ CH ₂ CN	Br			CH(C°H')CN	
(Conid.)		\bigcirc	50% aq NaOH, [C ₈ H3CH3N(C2H3)3]Cl	-	(90)	65
	٨	· ·	NaNH ₂	Toluene	" () A	339
	D	n-C ₆ H ₁₃ Br'	•	NH ₃ , toluene	$I_{R} = C_{6}H_{1,3}-n$ (65)	620
	CN				èn .	
	n-C4H9CH(C2H3)CN C6H3CH2CN	(C ₂ H ₃) ₂ N(CH ₂) ₂ Cl (C ₂ H ₃ O) ₂ CH(CH ₂) ₂ Cl n-C ₂ H ₁₃ Br	Li, (C2H3)2NH 50% aq NaOH, [C6H3CH2N(C2H3)3]Cl NaNH	C ₆ H ₆ . HMPA	I, R = $(CH_2)_2N(C_2H_5)_2$ (45) $n-C_4H_9C(C_2H_5)[(CH_2)_2CH(OC_2H_5)_2]CN$ (79) C.H.CH(C.H.,-mCN (63)	620 168 65,68
		n-C₁H₁₃Br n-C₁H₁₃OH'	LDA Na, CH ₃ CO ₂ C,H ₁₃ -# Na, C, H ₂ CO ₂ C,H	C ₆ H ₆ THF	(-) (62) (78)	607 641 314
		C.H,CH,CI	NaH	DME	" (73) ^r C ₆ H ₅ CH(CH ₂ C ₆ H ₃)CN 1, C ₆ H ₅ C(CH ₂ C ₆ H ₅) ₂ CN 11 L (41) 11 (58)	310,312
			KOH NaOH	HMPA DMF	I (-), II (-) I (-), II (-) I (-), II (26)	625 203
			N(C ₂ H ₃)C ₆ H ₁₃ -# BF ₄ CH ₃	-	I (63), II (14)	592
			Aq NaOH, (n-C4H9)4NI 50% aq NaOH, [C4H3CH2N(C2H3)3]Cl	-	1 (86) I (60)	227 606
			NaNH2	NH, HMPA	1 (15-30), II (4-35)	597 625
			-	NH3, Et2O	1 (33), 11 (30)	162
			KNH2	NH ₃ , Et ₂ O	1 (33), 11 (30)	162
		-	LICA	THF, -78°	I (63), II (18)	537
				THE	I (12), II (81)	47
			Na	FLO	1 (50), 11 (25)	198
			Mg	NH,	1 (54)	608
		and the second second	K	НМРА	1 (-), 11 (-)	551
		C ₆ H ₃ CH ₂ OH' C ₆ H ₃ CHCl ₂	Na, CH ₃ CO ₂ CH ₂ C ₆ H ₅ 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅) ₅]Cl	Ξ	$[C_{a}H_{5}CH(CN)]_{2}CHC_{a}H_{5} (-)$	309,313,31 70
		(C ₁ H ₃),N(CH ₃),Cl	NaNH ₂	C.H.	$C_4H_5CH[(CH_2),Br]CN$ (28) $C_4H_5CH[(CH_3),N(C_5H_4),]CN$ (70)	632
		I-(2-Chloroethyl)piperidine		E.O.	C,H3CH[(CH2)2N(CH2)3]CN (79)	632
				E120	() 9	028
		1-(3-Bromopropyl)succinimide		C ₆ H ₆ , DMF	C ₆ H ₃ CH(CN)(CH ₂) ₃ N (77)	643
		(C2H3O)2CH(CH2)2CI	- Nati	Et2O, C6H6	O C_H_CH[(CH_))_CH(OC_H_)_]CN (60)	644,645
		(0,115/201002013)	, 1011	DMBO		040
		3-Chloro-1-ethylpiperidine	NaNH ₂	Toluene	$\begin{pmatrix} N \\ - \end{pmatrix}$ + $\begin{pmatrix} N \\ - \end{pmatrix}$ CH ₂ CH(C ₆ H ₃)CN (-) $\begin{pmatrix} I \\ - \end{pmatrix}$ $\begin{pmatrix} I \\ - \end{pmatrix}$ $\begin{pmatrix} I \\ - \end{pmatrix}$	250,251

No. of C Atoms

C. (Contd.)

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
2-CIC,H,CH,CN	C°H'CH'OH.	Na. CH3CO2CH2C6H3	-	2-CIC ₆ H ₄ CH(CH ₂ C ₄ H ₃ CN (39)*
4-ClC ₆ H ₄ CH ₂ CN 4-H ₂ NC ₆ H ₄ CH ₂ CN	C ₆ H ₃ CH ₂ Cl	NaNH ₂	Et ₂ O	4-CIC ₆ H ₄ CH(CH ₂ C ₆ H ₃) ₂ CN (83) 4-H ₂ NC ₆ H ₄ C(CH ₂ C ₆ H ₃) ₂ CN (80), 4-(C ₆ H ₅ CH ₂ NH)C ₆ H ₄ C(CH ₂ C ₆ H ₃) ₂ CN (7),
2.4-Cl2CaH3CH2CN	4-CIC ₆ H ₄ OCH ₂ CI	NaH	DMF. C ₆ H ₆	4-[(C ₆ H ₃ CH ₂) ₂ N]C ₆ H ₄ C(CH ₂ C ₆ H ₃) ₂ CN (3) (4-ClC ₆ H ₄ O) ₂ CH ₂ (37), [2,3-Cl ₂ C ₆ H ₃ CH(CN)] ₂ CH ₂ (57) Λ Λ
A.	C ₆ H ₃ CH ₃ Cl	NaNH,	C.H.	
_4				CN $CH_2C_6H_5$ (56, 1:11 = 94:6)
LL ZN	-		NH ₃ , toluene	1 (39)
	CHANCHAC	1.4	4	(54)
	(c)iii)ii(cii))ci			(CH ₂) ₂ N(C ₂ H ₃) ₂
(i-C₃H₂)₂CHCN C₅H₃CH₂CN	C ₆ H ₃ O(CH ₃) ₂ Br n-C ₈ H ₁ ,Br ^c	LiN(C ₂ H ₅) ₂ NaNH ₂	Et2O C6H6 NH1, Et2O	$(i-C_3H_7)_2C[(CH_2)_2OC_6H_3]CN$ (25) $C_6H_5CH(C_8H_{17}-n)CN$ 1 (77) 1 (80), $C_8H_5C(C_8H_{17}-n)_5CN$ (6)
	n-CaH1,OH"	Na, CH ₃ CO ₂ C ₈ H ₁₇ -n Na, C ₆ H ₃ CO ₂ CH ₃	5.0	I (86)* I (74)*
	í-C₄H₁₂OH″ ၈-C₄Hュ₃CH(CH₃)Br ၈-C₄H₅CH(C₂H₅)CH₂Br	LICA NaNH ₂	THF. – 78° C6H6	C6H3CH(C8H17+1)CN (77)' C6H3CH[CH(CH3)C6H13+7]CN (82), C6H3C[CH(CH3)C6H13+7]2CN (2) C6H3CH[CH3CH(C2H3)C6H3+7]CN (-)
	n-C4H9CH(C3H3)CH2OH* n-C4H9CH(C3H3)CH2OH* C6H3CH(CH3)CH	Na, CH3CO2CH2CH(C2H3)C4H9-n Na, C6H3CO2CH3	Ξ.	" (77)" " (61)" erythro-C6H3CH(CH3)CH(C6H3)CN I, threo-C6H3CH(CH3)CH(C6H3)CN II
		50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		1 + 11 (66) 1 (-)
	÷	NaNH ₂ KNH ₂	C ₆ H ₆ NH ₃ , Et ₂ O	I, II () I (99)
			NH ₃ , THF	1 (30), 11 (29) 1 (43), 11 (33)
	4-CH ₃ C ₈ H ₄ CH ₂ Cl C ₈ H ₃ (CH ₂) ₂ Br	25% aq NaOH, [(n-C4H9)4N]Br NaNH2 "	NH ₃ , Et ₂ O	$C_{6}H_{3}CH(CH_{2}C_{6}H_{4}CH_{3}-4)CN$ (95) $C_{6}H_{3}CH[(CH_{2})_{2}C_{6}H_{3}]CN$ 1 (65-71) $L_{6}(L_{3})(CH_{2})(CH_{2})(CH_{3})CN$ (16)
	C ₆ H ₅ (CH ₂) ₂ Cl 1,4-C ₆ H ₄ (CH ₂ Cl) ₂	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl C10H2Na	THF	1 (35) 1,4-CeH4(CH3CH(CN)CeH3]2 (53)
XC ₆ H₄CH₃CN	(i-C₃H₁)₂N(CH₂)₂Ci	NeNH2	Toluene	$\begin{aligned} & XC_6H_4CH[(CH_2)_2N(C_3H_{7^{-1}})_2]CN & I \\ & I, X = H & (67) \\ & I, X = 2 \cdot F & (77) \\ & I, X = 2 \cdot CI & (67) \\ & I, X = 2 \cdot Br & (51) \\ & I, X = 4 \cdot F & (71) \\ & I, X = 4 \cdot F & (71) \\ & I, X = 2 \cdot CH_3 & (57) \\ & I, X = 2 \cdot CH_3 & (57) \\ & I, X = 2 \cdot CH_3 & (57) \end{aligned}$
C ₆ H ₅ CH ₂ CN	1-(3-Chloropropyl)-4-methylpiperazine		C ₆ H ₆	C4H3CH(CN)(CH2)3N NCH3 (63)
2-CIC ₆ H ₄ CH ₂ CN	CICH2CO2C6H11 n-C6H13OH	NaOH, [(C ₆ H ₃ CH ₂) ₂ N(C ₂ H ₃) ₂]Br Na, CH ₃ CO ₂ C ₆ H ₁₇ -n	C ₆ H ₁₁ OH	C ₆ H ₃ CH(CO ₂ H)CH ₂ CO ₂ H (82) ⁶ 2-CIC ₆ H ₄ CH(C ₈ H ₁₇ -n)CN (65) ⁶
4-CIC ₆ H ₄ CH ₂ CN	<i>n-C</i> ₄ H ₁₇ OH*	Na, C6H3CO2CH3 Na, CH3CO2C6H37-7 Na, C6H3CO2CH3	Ē	(80)* 4-CIC ₆ H ₄ CH(C ₈ H ₁₇ -n)CN (80)* * (74)*

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

Refs.

309,313,311 309,313,311

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nu leophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C. (Conid.)	4-CIC₅H₄CH₃CN 24-CI₃C₅H₃CH₃CN	C₄H₄(CH₂)₂Br XC₄H₄O(CH₂)₂Cl	NaH	DMF, toluene DMF, C ₆ H ₆	$4-CIC_{6}H_{5}CH[(CH_{2})_{2}C_{6}H_{5}]CN (-)$ $2.4-CI_{2}C_{6}H_{3}CH[(CH_{2})_{2}OC_{6}H_{4}X]CN II$ $I, X = H (61)$ $I, X = 4-F (48)$ $I, X = 2-CI (74)$ $I, X = 4-CI (66)$ $I, X = 2-Br (94)$ $I, X = 4-Br (98)$ $I, X = 2-Br (98)$	657 647
	A				A	
	Д	n-C _s H ₁₇ ľ	LICA	THF, -78°		178
	C ₆ H ₃ CH ₂ CN	л-C ₉ H ₁₉ OH*	Na, CH3CO2C9H19-#	÷	CN C ₆ H ₃ CH(C ₉ H ₁₉ -n)CN (77) ⁴	314
		-C ₃ H ₁₁ CH(CH ₃)(CH ₂) ₂ OH 4-CH ₃ C ₆ H₄(CH ₂) ₂ Cl	Na, C ₆ H ₃ CO ₂ CH ₃ Na, CH ₃ CO ₂ (CH ₂) ₂ CH(CH ₃)C ₅ H ₁₁ -r NaNH ₂		" (72)" C ₆ H ₃ CH[(CH ₂) ₂ CH(CH ₃)CH ₂ C ₆ H ₉ -r]CN (80)" 4-CH ₃ C ₆ H ₄ (CH ₂) ₂ CH(C ₆ H ₃)CN (33)	310,312 314 658
		BrCH2CO2C6H11	40% aq NaOH, [C,H,CH2N(C2H3)]Cl	Toluene	* (72) C ₆ H ₂ CH ₁ CN)CH ₂ CO ₂ C ₆ H ₁₁ (-).	658 77
		CH ₃ COC(CO ₂ C ₂ H ₃)(C ₂ H ₃)CH ₂ OH N-(5-Bromopentyl)succinimide	KOCH3 NaNH2	снјон	$C_{6}H_{3}C(CH_{2}CO_{2}C_{3}H_{1})_{5}CN (-)$ $C_{6}H_{3}CH(CN)CH_{2}C(C_{3}H_{3})(CO_{2}C_{3}H_{3})COCH_{3} (27)$ $C_{6}H_{3}CH(CO_{3}H)(CH_{3}VH_{3} (-)^{6}$	253 659,660
		•	-	C ₆ H ₆ , DMF	C ₆ H ₃ CH(CN)(CH ₂) ₅ N (65)	661
	2.4-Cl ₂ C ₆ H ₃ CH ₂ CN	XC ₆ H ₄ O(CH ₂) ₃ Cl	NaH	DMF, C ₄ H ₄	O 2.4-Cl ₂ C ₆ H ₃ CH[(CH ₂) ₃ OC ₆ H ₄ X]CN 1 1, X = H (74) 1, X = 4-F (83) 1, X = 4-Cl (81) 1, X = 2-Br (70)	647
	C ₆ H ₃ CH ₂ CN	n-C10H21OH"	Na. CH3CO2C10H21-#	-	$I, X = 4-Br (76) C_6H_5CH(C_{10}H_{21}-n)CN (73)'$	314
		"-(3-Chloro-2,2-dimethylpropyl)piperidine	Na, C ₆ H ₅ CO ₂ CH ₃ NaNH ₂ LINH ₂ KOCH	Toluene	" (70)" C ₆ H ₅ CH[CH ₂ C(CH ₃) ₂ CH ₂ N(CH ₂) ₅]CN (67) " (76)	310,312 662 663 253
		3,4,5-(CH ₃ O) ₃ C ₆ H ₂ CH ₂ Cl	NaNH ₂	NH ₃ , Et ₂ O	$C_{4}n_{3}CH_{1}CH_{2}CH_{2}CH_{3}/(C_{4}-r_{3})/(C_{4}-$	589
		CH ₂ =CH(CH ₂) ₉ Cl [(C ₂ H ₃) ₂ NCH ₂] ₂ CHCl 1-(Chloromethyl)naphthalene 6-(Chloromethyl)tetralin		Et ₂ O Toluene NH ₃ Et ₂ O	$C_{4}H_{3}CH[CH_{2}h_{3}CH=CH_{2}[CN (61)C_{6}H_{3}CH[CH_{2}h_{3}CH=CH_{3}]CN (54)C_{6}H_{3}C(CH_{3}C_{10}H_{7}-1)_{2}CN (52)C_{6}H_{3}C(CH_{3}C_{10}H_{7}-1)_{2}CN (52)C_{6}H_{3}C(H_{3}C_{10}H_{1}-6)CN (50)$	664 665 608 343
		N-(3-Bromopropyl)phthalimide		C ₄ H ₆ , DMF	C ₆ H ₃ CH(CN)CH ₃ (CH ₃) ₂ N (62)	643
	2,4-Cl2C6H3CH2CN	4-CH3OC6H4O(CH3)3CI	NaH		ර් 2,4-Cl ₂ C ₆ H ₃ CH[(CH ₃) ₃ OC ₆ H ₄ OCH ₃ -4]CN (84)	647
	C ₆ H ₃ CH ₃ CN	n-C ₁₂ H ₂₅ OH*	Na, CH3CO2C12H25-77 Na, C6H3CO2CH3	2	C ₆ H ₃ CH(C ₁₂ H ₂₅ -n)CN (72) ⁶ " (67) ⁶ 	314 310,312
		1-Chloroscensphthene	50% aq NaOH, [C6H,CH2N(C2H3)3]Cl	-	1 (67) + (trace)	81
		1-Bromoacenaphthene	NaNH ₂	Et ₂ O		666

C,

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

101

-						
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	A				A	
C. (Contd.)	47	n-C ₁₂ H ₂₃ Br ^c	•	NH ₃ , toluene	$C_{12}H_{25}-n$ (56)	620
	CN		1164	T115	CN	179
	C.H.CH.CN	(CAHA),CHCI	KNH,	1HF, - /8" NH, FLO	C.H.CHICH(C.H.).JCN (99)	161
			50% aq NaOH, [C.H.CH2N(C2H3)]Cl	-	" (94)	65,85,68
		sector that size	C10HaNa	THF	" (84)	198
		C ₆ H ₅ CH ₂ CH(C ₆ H ₅)Cl	NaNH ₂	NH ₃ , Et ₂ O	$C_6H_5CH[CH(C_6H_5)CH_2C_6H_5]CN$ (80-81)	249
		[FcCH ₂ N(CH ₃) ₃]*1 ⁻	Na	Toluene, DMF	$C_6H_3CH(CH_2Fc)CN$ (35)	667
C,	r-C4H9CH(C3H7-i)CN	CH ³ I	LDA	THF, 0°	$i-C_4H_9C(C_3H_7-i)(CH_3)CN$ (50)	565
	C ₆ H ₃ CH(CH ₃)CN	CH B-	NaNH ₂	Et ₂ O, NH ₃	$C_6H_5C(CH_3)_2CN$ (65)	180
	CH (CH) CN	CHI	LICA	C6H6 TUE 799		537
	2-CH.C.H.CH.CN	CH31	KNH,	NH ELO	$C_{6}G_{3}C_{12}C_{13}C_{13}C_{13}C_{13}C_{12}C_{12}C_{13}C_{13}C_{14}$	669
	2-NCC_H_CH_CN		NaOC,H,	C.H.OH	2-NCC_H_CH(CH_)CN (-)	670
	3-CH3OC4H4CH3CN	CH	NaNH ₂	Et,O	3-CH,OC,H,CH(CH)CN (-)	378
	4-CH3OC6H4CH2CN	**			4-CH3OC6H4CH(CH3)CN (47)	671
		•			4-CH3OC6H4C(CH3)2CN (58)	671
	П				П	
	F	1 State 1 Stat			rt l	
		CH3CI	-	NH,	(61)	588
	1				1	
	CN				CN	1
	I-C4H9CH(C3H7-I)CN	C ₂ H ₅ Br	104	NH,	$t - C_4 H_9 C(C_2 H_5)(C_3 H_7 - t) CN$ (56)	255
	C H CHICH YON		NaNH.	THF, 0°	(36) C H C(CH)(C H)(C) (70)	363
	Conjenienjen			CH	$C_{6}H_{5}C(CH_{3})(C_{2}H_{5})CN$ (70)	668
		CICH,OCH,CI	50% aq NaOH, [C,H3CH2N(C2H3)3]Cl	CéHé	(-) [C.H.C(CH.)(CN)CH.].O (84)	72
		CH3OCH2CI			C.H.C(CH ₃)(CH ₂ OCH ₃)CV (68)	85
		H ₂ C-CH ₂	NaNH ₂	Et ₁ O	$C_{0}H_{1}C(CH_{1})[(CH_{2})_{2}OH]CN(-)$	673,674
		V				
	C.H.(CH.)-CN	C.H.Br	LICA	TUE 700		\$37
	constent/jert	CICH,CN	50% aq NaOH, [C,H,CH2N(C2H3)]Cl	IHF/8	$C_{H_2}CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	73
	3-CH3OC6H4CH2CN	C2H3Br	NaNH ₂	C.H.	3-CH,OC,H,CH(C,H,)CN (-)	378,675
		•	•		3-CH3OC6H4C(C2H3)2CN (-)	675
	4-CH3OC6H4CH2CN	(CH ₃) ₂ SO ₄		El2O, NH3	4-CH3OC6H4CH(CH3)CN (80)	589
		C ₁ H ₃ Cl	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		4-CH3OC6H4CH(C2H3)CN (85)	570
		C ₂ H ₃ Br	NaNH ₂	-	" (38)	671
	0			(44)	$4 - CH_3OC_6H_4C(C_2H_3)_2CN$ (61)	6/1,0/5
	Ĭ				0 I	
	\sim	C.H.Br	1D4	E O UMPA 709		
		C)III III		EL20, HMPA, - 70"	(63)	10
	V CN				C.H.	
	H CN				C.H. CN	
	X				child Child	
	()	C ₂ H ₃ I	LiN(C ₆ H ₁₁) ₂	DME, -78°	(78)	676
	ICH CHICH YON	CYCH) B-	LIN(C.H.)		CH COUNTON COON (79)	169
	C.H.CH(CH.)CN	n-C-H-Br	NaNH,	CH	$C = C(CH_{1})(CH_{2})(CH_{2})(CH_{2})$	668
		i-C ₃ H ₇ Br			$C_{AH}(C(H_{A})(C_{AH})CN$ (60)	583
		HC=CCH ₂ Br	and the second se	Et,O, C,H.	$C_{4}H_{3}C(CH_{3})(CH_{2}C\equiv CH)CN$ (60-88)	613
		CH'OCH(CH')CI	50% aq NaOH, [C.H.CH2N(C2H3)]Cl		C ₆ H ₃ C(CH ₃)[CH(CH ₃)OCH ₃]CN (68)	72
	a la cale d'ale	BrCH ₂ CO ₂ CH ₃	NaNH	-	C ₆ H ₃ C(CH ₃)(CH ₂ CO ₂ CH ₃)CN (-)	677
	C ₆ H ₅ (CH ₂) ₂ CN	I-C3H,Br	LICA	THF, -78°	C6H3CH2CH(C3H7-i)CN (79), C6H3CH2C(C3H7-i)2CN (14)	537
		Ch2—ChCh2Br		-	$C_{A}H_{3}CH_{2}CH(CH_{2}CH=CH_{2})CN$ (64), $C_{6}H_{3}CH_{2}C(CH_{2}CH=CH_{2})_{2}CN$ (30)	537

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

$ \begin{array}{c} c_{\rm eff} (C_{\rm eff}, C_{\rm eff}, C_{$	No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	с.	C ₆ H ₅ (CH ₂) ₂ CN	CI(CH ₂) ₂ CN	50% aq NaOH, [C,H,CH2N(C2H3)]Cl	2	C ₆ H ₃ CH ₂ CH[(CH ₂) ₂ CN]CN (73)	73
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$	(Conid.)	AC6H4CH2CN	CI(CH ₂) ₃ Br	N-MU		XC ₆ H ₄ CH[(CH ₂) ₃ Cl]CN 1	
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$				NaNH ₂	-	$I, X = 2 - CH_3 (-)$	614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-	$I, X = 3-CH_3$ ()	614
$\begin{array}{ccccc} & & & & & & & & & & & & & & & & &$					-	$l, X = 4 - CH_3 (-)$	614
$\begin{array}{ccccc} + c_{1}(p_{1}(k)) & + c_{1}(k) & $					-	$I, X = 2 - CH_3O (-)$	614
$\begin{array}{ccccc} 4 - C_{0}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{1}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0}C_{0$					-	$I, X = 4 - CH_3O (-)$	614
$\begin{array}{cccc} 4-C_{11}$		4-CH3OC6H4CH3CN	n-C ₃ H ₇ Br	•	-	$4-CH_3OC_6H_4C(C_3H_7\cdot n)_2CN (70)$	671
$ \begin{array}{cccc} + c_{10}c_{11}(c_{11}(c_{11}), c_{11}(c_{11}), c_{1$		4-CH ₃ C ₆ H ₄ CH ₂ CN	i-C ₃ H ₇ Br		Et ₂ O	4-CH ₃ C ₆ H ₄ CH(C ₃ H ₇ -i)CN (-)	673
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4-CH3OC6H4CH2CN		50% aq NaOH, [C,H3CH2N(C2H3)3]Cl		$4-CH_3OC_6H_4CH(C_3H_7-i)CN I (ca. 80)$	610
$\begin{array}{ccccc} Marc(n) C, Marc(n) & - & 91 (x, Mohl, (C, M, CH, MC, H_{A}), Cl & - & Marc(n), O, C, M, (C, M, C, M, C, M) & 0 \\ \hline \\ \begin{array}{ccccc} C, M, M,$				50% aq NaOH, dicyclohexyl-18-crown-6	C ₆ H ₆	" (81)	678
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3,4-F(CH ₃ O)C ₆ H ₃ CH ₂ CN	•	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		3,4-F(CH ₃ O)C ₆ H ₃ CH(C ₃ H ₂ -i)CN $(-)$	678
$ \begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$		of the series		NoOH	DMEO	0	670
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6		Naon	DMSO	(0/9
$ \begin{array}{c} 2 e^{2} \mu_{0} \mu_$		2-(2-Pyridyl)butyronitrile	CH2=CHCH2Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	(*)	$(2-C_3H_4N)C(C_2H_3)CH_2CH=CH_2)CN$ (85)	569
$\begin{array}{cccc} c_{i,i} (c_{i,j} (c_$		2-(4-Pyridyl)butyronitrile	CH2=CHCH2CI			$(4-C_3H_4N)C(C_2H_3)(CH_2CH=CH_2)CN$ (93)	209
$ \begin{array}{ccccc} C_{\mu}(CRCH_{\mu}CN & \begin{array}{ccccc} C_{\mu}(CRCH_{\mu}CN & 0) & \begin{array}{ccccc} C_{\mu}(CRCH_{\mu}C, 0) & \begin{array}{cccccc} C_{\mu}(CRCH_{\mu}C, 0) & \begin{array}{cccccc} C_{\mu}(CRCH_{\mu}C, 0) & \begin{array}{ccccccc} C_{\mu}(CRCH_{\mu}C, 0) & \begin{array}{cccccccccc} C_{\mu}(CRCH_{\mu}C, 0) & \begin{array}{ccccccccccccccccccccccccccccccccccc$		$I-C_4H_9CH(C_3H_7-I)CN$	I-C ₄ H ₉ Br	NaNH ₂	NH ₃	$I-C_4H_9C(C_3H_7-i)(C_4H_9-i)CN$ (39), $I-C_4H_9(i-C_3H_7)C=C=NC_4H_9-i$ (12)	255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₆ H ₅ CH(CH ₃)CN	n-C4H9Cl		Toluene	$C_6H_5C(CH_3)(C_4H_9-n)CN$ (61)	166
$ \begin{array}{ccccc} & & & & & & & & & & & & & & & & &$			n-C4H9Br		Toluene or C6H6	" (61)	166,668
$ \begin{array}{c cccc} & cccccccccccccccccccccccccccccc$					C ₆ H ₆	" (56)	649
$\begin{array}{cccccc} & \begin{array}{ccccccccccccccccccccccccccccccccccc$			n-C4H9I		Toluene	" (62)	166
$ \begin{array}{c cccc} & & cccccccccccccccccccccccccccc$			i-C4H9Cl		-	C6H3C(CH3)(C4H9-i)CN (60-69)	166
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$			sec-C4H9Cl		Toluene	C6H3C(CH3)(C4H9-sec)CN (67-68)	166
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			r-C4H9Cl			$C_6H_3C(CH_3)(C_4H_9-t)CN$ (4-12)	166
$ \begin{array}{c c} (CH_{1})N(CH_{1})CC' & CH_{1} & CH_{1} & CH_{1} & CH_{1} & CH_{1} & CH_{1} & (CH_{1})C(CH_{1})C(H_{1})C(H_{1})C(H_{1}) & (H) & ($			CICH ₂ CO ₂ C ₂ H,		Et ₂ O	$C_6H_5C(CH_3)(CH_2CO_2C_2H_3)CN (-)$	680
$\begin{array}{c c c c} & \begin{array}{c} LNH_{1}^{n} & Tolune & - (3) & (6) \\ C(H_{1}CH(CH_{1}CH(H_$			(CH ₃) ₂ N(CH ₂) ₂ Cl ^e		C.H.	$C_6H_5C(CH_3)[(CH_2)_2N(CH_3)_2]CN$ (81)	681
$ \begin{array}{c} + CH_{1}C_{1}H_{1}C^{1}C^{1}\\ CH_{1}C^{1}H_{1}C^{1}C^{1}\\ CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H_{1}C^{1}H_{1}H^{1}H_{1}} \\ \hline \\ \begin{array}{c} + CH_{1}C_{1}H_{1}C^{1}\\ CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}C^{1}H_{1}H^{1}C^{1}H_{1}H^{1}C^{1}H_{1}H^{1}H_{1}} \\ \hline \\ \begin{array}{c} + CH_{1}C_{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}C^{1}H_{1}H^{1}C^{1}H_{1}H^{1}H_{1}} \\ \hline \\ CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1}C^{1}H_{1}H^{1}H_{1}} \\ \hline \\ \begin{array}{c} - CH_{1}C_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1}C^{1}H_{1}H^{1}H_{1}} \\ \hline \\ - CH_{1}C^{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}H_{1}C^{1}H_{1}C^{1}H_{1}H^{1}H_{1} \\ \hline \\ - CH_{1}C^{1}H_{1}C^{$				LiNH ₂	Toluene	" (55)	663
$ \begin{array}{ccccc} C_{\mu}(c,H_{1},C,N) & C(CH_{1},C,N) & 90\% + 9 NOH, [C_{\mu},C,H_{1},OH,C_{\mu},J_{1},D] & - & C_{\mu},C_{\mu}(CH_{1},J_{1},O(N)C,H_{1},-) & 73 \\ \hline \\ $		4-CH3C6H4CH2CN	CICH ₂ CH(CH ₃)CH ₂ Br ^e	NaNH ₂		4-CH ₃ C ₆ H ₄ CH[CH ₂ CH(CH ₃)CH ₂ Cl]CN (-)	614
$ \begin{array}{cccc} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}$		C ₆ H ₃ (CH ₂) ₂ CN	CI(CH ₂) ₃ CN	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$C_6H_3CH_2CH[(CH_2)_3CN]CN$ ()	73
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9				0	
$ \begin{array}{c c} (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $. I	
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $		(Y)	MOLC H.Br	104	F: 0 10404 705		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			in Fearion	LDH .	El20, HMPA, -70°	(80)	- un
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		V CN				CN Call,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Br	140			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C ₆ H ₃ (CH ₂) ₂ CN		LICA	THF, -78°	$C_{6}H_{3}CH_{2}CH(C_{3}H_{9})CN$ (76), $C_{6}H_{5}CH_{2}C(C_{3}H_{9})_{2}CN$ (12)	537
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CI(CH ₂) ₄ CN	50% aq NaOH, [C,H,CH,N(C,H,),]Cl	-	C.H.CH.CHI(CH.).CNICN (-)	73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C.H.CH(CH.)CN	n-C.H.,Cl	NaNH,	-	C.H.C(CH.)(C.H.,-n)CN (77-78)	167
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			n-C.H.Br		<u> </u>	" (76)	167,668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			n-C.H.,1		-	" (60)	167
C,H,CH(CH,)CH,2CI - - C_4H,C(CH,1)CH,2CH,3(N (90)) 167 n-C,H,CH(CH,3)CI - - C_4H,C(CH,1)C(H,2C,H,3(N (90)) 167 n-C,H,CH(CH,3)Br - - C_4H,C(CH,1)C(H,2C,H,3(N (90)) 167 (C,H,1,CHC)Br - - C_4H,C(CH,1)C(H,2C,H,3(N (90)) 167 (C,H,1,CHC)Br - - C_4H,C(CH,1)C(H,2C,H,3)(C,H4,88) 167 (C,H,1,Cl - - C_4H,C(CH,1)C(N (176)) 167 (C,H,1,Cl - - C_4H,C(CH,1)(C,H,1,CN (trace)) 167 (C) - - C_4H,C(CH,1)(C,H,2)(N (86-90) 167 (C) - - C_4H,C(CH,1)(C,H,2)(N (75)) 72 (C) - - C_4H,C(CH,1)(CH,2),CO,4,H,-7)(N (75) 72 (C) - - C_4H,C(CH,1)(CH,2),CO,4,H,-7)(N (75) 72 (C) - - C_4H,C(CH,1)(CH,2),CO,4,H,-7)(N (-) 682 (C) - - C_4H,C(CH,1)(CH,2),CO,4,H,-7)(N (-) 682 (C) - - C_4H,C(CH,1)(CH,2),CO,4,H,-7)(N (-) 682 (C)			i-C.H.,Cl			C.H.C(CH.)(C.H.,-i)CN (84-85)	167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C+H+CH(CH+)CH+CI		-	C.H.C(CH.)[CH.CH(CH.)C.H.]CN (90)	167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			n-C.H.CH(CH.)Cl	· · ·	-	C.H.C(CH.)[CH(CH.)C.H#]CN (69)	167
Image: Circle			n-C-H-CH(CH-)Br	· ·		" (84)	167
i i - C_H_3C(CH_3)(C_1H_1,-1)CN (trace) 167 i - C_H_3C(CH_3)(C_1H_2,-1)CN (trace) 167 i - C_H_3C(CH_3)(CH_3,-1)CN (trace) 167 i - C_H_3C(CH_3)(CH_3,-1)CN (trace) 167 i - C_H_4 C_H_4,-1)CH_4,-1)CN (trace) 167 i - - C_H_4,-1)CH_4,-1)CN (trace) 167 i - - C_H_4,-1)CH_4,-1)CN (trace) 168 i -			(C.H.)-CHCI	-	-	C.H.C(CH.)(CH(C.H.).1CN (84-88)	167
Cl - C ₆ H ₅ C(CH ₃)(C ₅ H ₆)CN (86-90) 167 CH ₃ CHClOC ₅ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl - C ₆ H ₅ C(CH ₃)(C,H ₆)CO (H ₃) ₂ Cl (75) 72 Br(CH ₂) ₂ CO ₂ C ₂ H ₃ NaNH ₃ C ₆ H ₆ C ₆ H ₅ C(CH ₃)(CH ₃)CO (C,H ₃)CN (75) 72 Br(CH ₂) ₂ CO ₂ C ₂ H ₃ NaNH ₃ C ₆ H ₆ C ₆ H ₅ C(CH ₃)(CH ₃)[CH(CH ₃)CO (C,H ₃)CN (-)) 682 CH ₃ CHBCO ₂ C ₂ H ₃ " 60% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl - C ₆ H ₅ C(CH ₃)(CH ₃)CO (C,H ₃)CN (-)) 682 2-CH ₃ C ₆ H ₄ CH ₂ CN " 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl - C ₆ H ₅ C(CH ₃)(CH ₃)CO (C,H ₃)CN (-)) 683-685 BrCH ₂ CO ₂ C ₃ H ₃ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl - C ₆ H ₅ C(CH ₃)(CH ₁)CO (C,H ₁) ₂ CN (74) 78 2-CH ₃ C ₆ H ₄ CH ₂ CN NaH DMF (2-C ₄ H ₃ OCH ₂ -CN (74) 78 4-CH ₃ OC ₆ H ₄ CH ₃ CN " NaNH ₂ - (2-C ₄ H ₃ OCH ₂ -CH ₆ CH ₃ -CN (-) 634 4-CH ₃ OC ₆ H ₄ CH ₃ CN " NaNH ₂ - (2-C ₄ H ₃ OCH ₂ -CH ₆ CH ₃ -CN (-) 635 C ₆ H ₃ CH(CH ₃)CN " NaNH ₂ - (2-C ₄ H ₃ OCH ₆ CH ₄			I-C-H.,Cl	1. 1 . 1		C.H.C(CH.)(C.H. ()CN (trace)	167
- C ₆ H ₅ C(CH ₃)(C ₅ H ₉)CN (86-90) 167 CH ₃ CHClOC ₅ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₃ N(C ₂ H ₃) ₃]Cl - C ₆ H ₃ C(CH ₃)(C ₃ H ₉ ,cN (86-90) 167 B(CH ₃) ₂ CO ₂ C ₂ H ₃ NaNH ₂ C ₆ H ₆ C ₆ H ₃ C(CH ₃)(CH(CH ₃)OC ₃ H ₇ -i)CN (75) 72 B(CH ₃) ₂ CO ₂ C ₂ H ₃ NaNH ₂ C ₆ H ₆ C ₆ H ₃ C(CH ₃)(CH(CH ₃)CO ₂ C ₃ H ₃)CN (-) 682 CH ₃ CH ₃ CO ₂ C ₃ C ₃ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃ Cl - C ₆ H ₃ C(CH ₃)(CH(CH ₃)CO ₂ C ₃ H ₃)CN (-) 683-685 BrCH ₂ O ₂ C ₃ C ₃ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃ Cl - C ₄ H ₃ C(CH ₃)(CH(CH ₃ CO ₂ C ₃ H ₃)CN (64) 683-685 BrCH ₂ OC ₃ C ₃ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃ Cl - C ₄ H ₃ C(CH ₃)(CH(CH ₃ OCO ₂ C ₃ H ₃)CN (64) 683-685 BrCH ₂ OC ₃ C ₃ H ₇ -i 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃ Cl - C ₄ H ₃ C(CH ₃)(CH(CH ₃ OCO ₂ C ₃ H ₃)CN (64) 683-685 2-CH ₃ C ₆ H ₄ CH ₂ CN NaH DMF (2-C ₄ H ₃ OC)(2-C ₄ H ₄ CH ₃ -2CN (-4) 78 2-CH ₃ C ₄ H ₄ CH ₃ CN NaNH ₂ - (2-C ₄ H ₃ OC)(2-C(CH ₄ H ₄ CH ₃ -2CN (-4)) 635 C ₄ H ₃ CH(CH ₃)CN NaNH ₂ - (2-C ₄ H ₃ OC)(2-C(CH ₄ GH ₃ CN			çi				107
CH3CHCloC3H7-i 50% aq NaOH, [C6H3CH2N(C2H3)]Cl - C6H3C(CH3)(C1H3)(C1H3)(C1H3)(C1 (75)) 72 Br(CH2)3CO2CH3 NaNH2 C6H4 C6H3C(CH3)[CH(CH3)OC3H7-i]CN (75)) 72 Br(CH2)3CO2CH3 NaNH2 C6H4 C6H3C(CH3)[CH(CH3)CO3C1H3]CN (-)) 682 CH3CHBrC02C2H3 " E1O C4H3C(CH3)[CH(CH3)CO3C1H3]CN (64) 683-685 BrCH2C02C3CH3-i 50% aq NaOH, [C6H3CH2N(C2H3)]Cl - C6H3C(CH3)[CH(CH3)CO3C1H3]CN (64) 683-685 BrCH2C02C3CH3-i 50% aq NaOH, [C6H3CH2N(C3H3)]Cl - C6H3C(CH3)[CH(2CD3C3H4-CH3)CN (-)) 78 2-CH3C6H4CH3CN 2-(Chloromethyl)/uran NaH DMF (2-C4H3O)CH2CH2C0S(4H4CH3-2CN (-)) 634 4-CH3OC6H4CH3CN " NaNH3 - (2-C4H3O)CH2CH2(4H4CH3-2CN (-)) 635 C6H3CH(CH3)CN #-C6H33BF " C6H6 C6H3C(CH3)CN (-) 635 C6H3CH(CH3)CN #-C6H33BF " C6H6 C6H3C(CH3)CN (-) 636 C6H3CH(CH3)CN #-C6H33BF " C6H6 C6H3C(CH3)CN (-) 636 C6H3CH(CH3)CN #-C6H33BF " C6H6 C6H3C(CH3)CN (-) 636			1	1.1.2		and a second contract of a second	
CH_2 CH_3CHClOC_3H_7-i 50% aq NaOH, [C_6H_3CH_2N(C_2H_3)_2Cl C_6H_5C(CH_3)[CH(CH_3OC_3H_7-i]CN (75) 72 Br(CH_2)_5CO_2C_3H_3 NaNH_2 C_6H_6 C_6H_5C(CH_3)[CH(CH_3OC_3H_7-i]CN (75) 682 CH_3CHBCO_2C_2H_3 " E12O C_8H_5C(CH_3)[CH(CH_3CO_2C_3H_3]CN (-) 683-685 Br(CH_2O_2C_3H_7-i 50% aq NaOH, [C_6H_5CH_2N(C_2H_3)_3]Cl - C_6H_5C(CH_3)[CH(CH_3CO_2C_3H_7-i)CN (54) 683-685 2-CH_3C_8H_4CH_2CN 2-(Chioromethyl)furan NaH DMF (2-C_4H_3OCH_4CH_2CN (-)) 78 4-CH_3OC_6H_4CH_2CN " NaNH_2 - C_6H_5C(CH_4)CH_4CH_7CN (-) 634 4-CH_3OC_8H_4CH_2CN " NaNH_2 - (2-C_4H_3OCH_4CH_4OCH_3-4)CN (-) 635 C_6H_5CH(CH_3)CN #-C_6H_5C(CH_4)CH_4OCH_4OCH_3-4)CN (-) 635 635 C_6H_5CH(CH_3)CN #-C_6H_6 C_6H_5C(CH_4)CH_4OC (-) 635 C_6H_5CH(CH_3)CN #-C_6H_6 C_6H_5C(CH_4)C(C_8H_4OCH_3-4)CN (-) 668 (C_3H_4,O)_2CHCH_3Br " C_6H_6 C_6H_5C(CH_4)(C+1)C_6(H_4,OCH_4)_2)CN (-) 668			$\langle \rangle$		-	$C_{6}H_{3}C(CH_{3})(C_{5}H_{9})CN$ (86-90)	167
CH_3CHClOC_3H_7-i 50% aq NaOH, [C_6H_3CH_2N(C_2H_3)_2]Cl C_6H_3C(CH_3)[CH(CH_3OC_3H_7-i]CN (75) 72 Br(CH_2)_2CO_2C_3H_3 NaNH_2 C_6H_6 C_6H_5C(CH_3)[(CH_3)_2CO_2C_3H_3]CN (-) 682 CH_3CHBrCO_2C_3H_3 " Et_2O C_4H_4C(CH_3)[CH(CH_3OC_3C_3H_7-i]CN (75) 683-685 BrCH_2CO_2G_3H_7-i 50% aq NaOH, [C_6H_5CH_2N(C_2H_3)]Cl - C_6H_5C(CH_3)[CH(CH_3CO_2C_3H_7-i]CN (74) 683-685 2-CH_3C_6H_4CH_2CN 2/Chloromethyl/Juran NaH DMF C_6H_5C(H_4)CH(CH_6CH_3CO_1A_7-i)CN (74) 78 4-CH_3OC_6H_4CH_2CN " NaNH_3 - C_6H_5C(CH_4)OCH(C_6H_6CH_3-2CN (-)) 634 4-CH_3OC_6H_4CH_2CN " NaNH_3 - (2-C_4H_3OCH_4CH_3CN (-)) 635 C_6H_5CH(CH_3)CN " NaNH_3 - (2-C_4H_3OCH_4CH_3CN (-)) 635 C_6H_5CH(CH_3)CN " - (2-C_4H_3OCH_4CH_3CN (-)) 635 C_6H_5CH(CH_3)CN " C_6H_6 C_6H_5C(CH_3)(C_6H_1, n)CN (-) 668 (C_6H_4C)C1A_3CR " C_6H_6 C_6H_5C(CH_3)(C_6H_1, n)CN (-) 668 (C_6H_4C)H_3CN " C_6H_6 C_6H_5C(CH_3)(C_6H_1, n)CN (-)							
Br(CH2):CO2;CH3 NaNH2 C6H3 C6H3 C(H3)[CH2,CO2;CH3]CN (73) 12 Br(CH2):CO2;CH3 NaNH2 C6H6 C6H3(CH2):CO2;CH3[CN (-)) 682 CH2,CO2;C3H3 " Et2O C6H3(CH2)[CH2,CO2;CH3]CN (-)) 682 Br(CH2):CO2;C3H3-i 50% aq NaOH, [C6H3CH2,N1CH2,N1CH2] Et2O C6H3(CH3)[CH2,CO2;C3H3;CN (4)) 683-685 Br(CH2;CO2;C3H3-i 50% aq NaOH, [C6H3;CH2,N1C2H3,D1]CH - C6H3(C(CH3)(CH2,CO2;C3H3;CN (74)) 78 2-CH3;C6H4;CH3;CN 2-(Chloromethyl)/luran NaH DMF (2-C4H3O)CH3(CH3,CO2;CH3,2CN (-)) 634 4-CH3;OC8;H4;CH2;CN " NaNH3 - (2-C4H3O)CH2(CH3,CO1,C4H3,CN (-)) 635 C6H3;CCH3;CN #-C8H3;Br " C4H6 C6H3(CH3,)CN (-) 635 C6H3;CCH3;CN #-C8H3;Br " C4H6 C6H3(CH3,)CN (-) 668 (C4H4;O);CHCH3;Br " C4H6 C6H3(CH3,)C(H3,)CN (-) 668 686,637,63 (C4H4;O);CHCH3;Br " Et2O C6H3(CH3,)C(H3,)C1(O2,H3,);CN (-) 668 686,637,63			CH.CHCIOC.H.J	50% ag NaOH, [C.H.CH.N(C.H.).)CI		CH CICH VICHICH VOC H DCN (75)	77
C4H3CUE40101 C4H3CUE40101 682 CH3CHBrC02C3H3 " Et2O C6H3CUE40101 683-685 BCH3CO3C3H4-1 50% aq NaOH, [C4H3CH2N(C2H3)]Cl - C6H3C(CH3)(CH4CH3CO3C3H43)CN 683-685 2-CH3C6H4CH2CN 2-(Chioromethyl)/uran NaH DMF (2-C4H3O)CH3CH4(C4H3-2)CN 74 4-CH3OC6H4CH2CN " NaNH3 - (2-C4H3O)CH3CH4(CH3-2)CN 635 C6H3CH(CH3)CN - (2-C4H3O)CH3CH4(CH3-2)CN 635 635 C6H3CH(CH3)CN " NaNH3 - (2-C4H3O)CH3CH4(CH3-2)CN 635 C6H3CH(CH3)CN - (2-C4H3O)CH3CH4(CH3-2)CN 635 635 C6H3CH(CH3)CN - (2-C4H3O)CH3CH4(CH3-2)CN 635 636 C6H3CH(CH3)CN - (2-C4H3O)CH3CH4(CH3-2)CN 635 636 C6H3CH(CH3)CN - (2-C4H3O)CH3CH3CN - 635 C6H3CH(CH3)CN - (2-C4H3O)CH3CH3CN - 636 C6H3CH4CH3CN - (2-C4H3O)CH3CH3CN - 636 C6H3CH4CH3CN - (2-C4H3O)CH3CH3CN - 636			Br(CH_)_CO_C_H	NaNH.			12
E10 E10 C4H3C(CH3)(CH(CH3)C03C;H3)(C4) 683-683 BrCH3C02G3H3-i 50% aq NaOH, [C4H3CH2N(C2H3)3]C1 - C4H3C(CH3)(CH4CH2C03C;H3)(C1) 78 2-CH3C4H4CH3CN 2-(Chioromethy)/uran NaH DMF (2-C4H3OCH4CH4,CN)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2)(-2			CH CHB-CO C H		C ₆ H ₆	$C_{4}H_{3}C(CH_{3})[(CH_{2})_{2}CO_{2}C_{3}H_{3}]CN(-)$	682
Bit Cr 12 O 2 - CH 3 CG H 4 CH 12 CM 2 - CH 3 CM				50% to NOH IC H CH N/C H.). 1CI	Et ₂ O	$C_6H_3C(CH_3)[CH(CH_3)CO_2C_2H_3]CN$ (64)	683-685
2-ChyCentyChyCe		A CH C H CH CH		N-D	272	$C_6H_3C(CH_3)(CH_2CO_2C_3H_7-i)CN$ (74)	78
$a-c_{H_2C_4L_2C_1C_1}$ $NaNn_2$ $ (2-C_4H_3O)CH_2CH(C_6H_4OCH_34)CN$ $(-)$ 635 $C_6H_5CH(CH_3)CN$ $n-C_6H_{1,3}Br$ " C_6H_6 $C_6H_5C(CH_3)(C_6H_{1,3}n)CN$ $(-)$ 668 $(C_2H_4O)_2CHCH_2Br$ " $E_{12}O$ $C_6H_5C(CH_3)[CH_2CH(OC_2H_2)_2]CN$ $(65-68)$ $686,637,63$		ACH OC U CU CN	z-(Chloromethyl)turan	NeMU	DMF	$(2-C_4H_3O)CH_2CH(C_6H_4CH_3-2)CN (-)$	634
C6H3CH(CH3CN) H-GH13BH C6H6 C6H3C(CH3)(C4H13-7)CN (-) 668 (C1H40)2CHCH2Br C6H3C(CH3C) C6H3C(CH3C)(C4H3)2CN (65-68) 686,637,63			CH P	(Valvin)		$(2-C_4H_3O)CH_3CH(C_6H_4OCH_3-4)CN (-)$	635
С ₄ H ₂ C(CH ₃)[CH ₂ CH(OC ₂ H ₂) ₂]CN (65-68) 686,637,63		C6H3CH(CH3)CN	A-Cenisbr		C ₆ H ₆	$C_6H_3C(CH_3)(C_6H_{13},n)CN$ (-)	668
			(C2H4O)2CHCH2Br		Et ₂ O	$C_6H_5C(CH_3)[CH_2CH(OC_2H_2)_2]CN$ (65-68)	686,037,63

C10

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABIL

lized Carbanions with	ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Con				
	Reaction Conditions	Product(s) and Yield(s) (%)			
	C ₆ H ₆	C ₄ H ₅ C(CH ₃)(CN)(CH ₂) ₂ N (69)			
NaOH, [C6H3CH2N(C2H3)3]Cl	Et ₂ O	C ₄ H ₃ C(CH ₃)[CH(C ₁ H ₃)CO ₂ C ₁ H ₃]CN (48) C ₆ H ₃ C(CH ₃)(CH ₂ CO ₂ C ₄ H ₉ -t)CN (76)			
	-	$\int_{S} L_{C(CH_{2}CH=CH_{2})[(CH_{2})_{2}N(CH_{2})_{4}]CN} (22)$			
H ₅) ₂	НМРА	(CH ₃) ₂ C=CH(CH ₂) ₂ C(CH ₃)(CN)(CH ₂) ₂ O (80)			
	DMSO	2-CH3OC6H4CH(CH2C6H3)CN (77)			

105

ntinued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ (Conid.)	(C ₂ H ₃ O) ₂ CHCH ₂ Br	4-(2-Chloroethyl)morpholine	NaNH2	C ₆ H ₆	C ₆ H ₅ C(CH ₃)(CN)(CH ₂) ₂ N (69)	681
		C2H3CHBrCO2C2H3 BrCH2CO2C4H9-1	" 50 % aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅) ₅]Cl	Et ₂ O	$C_{4}H_{3}C(CH_{3})[CH(C_{3}H_{3})CO_{2}C_{2}H_{3}]CN$ (48) $C_{6}H_{5}C(CH_{3})(CH_{2}CO_{2}C_{4}H_{6}-t)CN$ (76)	683,685,687 78
	CH2CH=CH2)CN	I-(2-Chloroethyl)pyrrolidine	NaNH2	-	$\int_{S} \int_{C(CH_2CH=CH_2)[(CH_2)_2N(CH_2)_3]CN} (22)$	567
	(CH ₃) ₂ C=CH(CH ₂) ₂ CH(CH ₃)CN	O(CH ₂) ₂ Cl	LiN(C ₂ H ₃) ₂	НМРА	$(CH_1)_2C=CH(CH_1)_2C(CH_1)(CN)(CH_2)_2O$ (80)	556
	2-CH3OCAHACH3CN	C.H.CH.CI	NaH	DMSO	2-CH-OC-H-CH(CH-C-H-)CN (77)	688
	2-(NC)C6H4CH2CN	C.H.CH2CF	NaOC ₂ H ₃	C ₂ H ₃ OH	$2-(NC)C_{A}H_{4}CH(CH_{2}C_{A}H_{4})CN (-)$	670
	C ₆ H ₅ CH(CH ₃)CN	n-C ₇ H ₁₅ Br	NaNH ₂	C ₆ H ₆	$C_{6}H_{3}C(CH_{3})(C_{7}H_{13}-n)CN$ (-)	668
		C ₆ H ₅ CH ₂ Cl	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	C ₆ H ₃ C(CH ₃)(CH ₂ C ₆ H ₃)CN (82)	68
		(C2H3O)2CH(CH2)2Cl	NaNH ₂	El2O. C6H6	$C_{6}H_{3}C(CH_{3})[(CH_{2})_{2}CH(OC_{2}H_{3})_{2}]CN$ (70)	644,645
		(C2H3O)2CHCH(CH3)Br		Et ₂ O	$C_8H_3C(CH_3)[CH(CH_3)CH(OC_2H_3)_2]CN$ (69)	689,685
		I-(2-chloroethyl)piperidine		C ₆ H ₆	$C_{6}H_{3}C(CH_{3})[(CH_{2})_{2}N(CH_{2})_{3}]CN$ (72)	681
		n-C ₃ H ₂ CHBrCO ₂ C ₂ H ₃ Br		Et ₂ O	$C_6H_5C(CH_3)[CH(C_3H_7-n)CO_2C_2H_3]CN$ (49)	683,685,687
		Ţ				
	C ₆ H ₅ (CH ₂) ₂ CN	\bigcirc	LICA	THF, 78°	$C_6H_5CH_2CH(C_7H_{13})CN$ (67), $C_6H_5CH_2C(C_7H_{13})_2CN$ (1)	537
		C.H.CH.CI			(C.H.CH.).CHCN (70) (C.H.CH.).CCN (24)	537
	4-CH,C,H,CH,CN	C.H.(CH.).Cl	NaNH-	C.H. or toluene	4CH.C.H.CHI(CH.).C.H.JCN (38-40)	658
	2-NCC, HACH, CN	2-NCC+H+CH2CI	NaOC-H.	C.H.OH	2-NCC.H.CH(CH.C.H2-CN)CN (-)	670
		C4H4(CH2)31			2-NCC_H_CHI(CH_)-C_H_ICN (-)	670
	C ₆ H ₃ CH(CH ₃)CN	n-CaH13Br	NaNH,	C.H.	$C_{4}H_{4}C(CH_{4})(C_{4}H_{12}-\pi)CN$ (66)	649,668
		BrCH,CO,C,H,	50% ag NaOH, [C.H.CH.N(C.H.),]CI		C+H+C(CH+)(CH+CO+C+H++)CN (78)	78
		n-CAHoCHBrCO,C,H	NaNH,	Et,O	CAHACICHA)ICH(CAHA-m)COACAHAICN (38)	683,687,685
		(C2H3O)2CHCH(C2H3)Br			CAH, CICH,)[CH(C,H,)CH(OC,H,),]CN (55)	689,685
	C ₆ H ₃ (CH ₂) ₂ CN	<i>n</i> -C _a H ₁ ,X	LICA	THF78°	$C_{6}H_{3}CH_{2}CH(C_{6}H_{1},-n)CN , C_{6}H_{3}CH_{2}C(C_{8}H_{1},-n)_{2}CN $ X = CI: I (63), (36) X = Br: I (63), (37)	537
					X = I: I (70), II (30)	
		n-C ₆ H ₁₃ CH(CH ₃)Br		-	$C_6H_5CH_2CH[CH(CH_3)C_6H_{13}-n]CN$ (85), C_H_CH_2CH(CH(CH_3)C_6H_{13}-n]CN (1)	537
	C ₆ H ₅ CH(CH ₃)CN	(C2H3O)2CHCH(C3H7-n)Br	NaNH ₂	Et,O	C+H+C(CH+)[CH(C+H++n)CH(OC+H+)+]CN (52)	689,685
	4-CH3OC6H4CH2CN	3,4.5-(CH3O)3C6H2CH2CI	•	NH3, EI2O	$4 - CH_3OC_6H_4CH[CH_2C_6H_2(OCH_3)_3-3,4,5]CN$ (68),	589
	C ₆ H ₃ CH(CH ₃)CN	(C2H3O)2CHCH(C4He-n)Br		Et,O	$C_{A}H_{A}C(CH_{A})[CH(C_{A}H_{0},n)CH(OC_{3}H_{A})_{3}]CN$ (47)	689,685
		6-(Chloromethyl)tetralin			$C_6H_3C(CH_3)(CH_2C_{10}H_{11}-6)CN$ (33)	343
C10	1,2-C ₆ H ₄ (CH ₂ CN) ₂	CH31 (2 eq)	CH ₃ Li	Et ₂ O, THF, -100°	1,2-C ₆ H ₄ [CH(CH ₃)CN] ₂ (94)	45
					C(CH ₃) ₂ CN	
		" (4 eq)	•	" (15 min)	1 (90) CH(CH ₃)CN	45
					at	
		" (4 cq)	•	" (20 hr)	I (72).	45
	13C.H.(CH.CN)	" (2 co)				46
	1,5-C6H4(CH2CH)2	" (4 cq)			1.3-C.H.[C(CH.).CN]. (90)	45
	L4-C.H.(CH-CN).	" (2 co)		6 N /	14-C.H.[CH(CH,)CN], (80) 14-C.H.[C(CH,),CN], (10)	45
		" (4 eq)			1.4-C.H.[C(CH.).CN]. (99)	45
		CHICI	NaOH	An DMSO	" (87)	690
	4-C2H3OC6H4CH2CN	CHJF	NaNH:	-	4-C,H,OC,H,CH(CH,)CN (63)	671
					4-C,H,OC,H,C(CH,)2CN (64)	671

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

107

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C10	2-(CH3OCH2O)C6H4CH2CN	снл	NaNH2		2-(CH ₃ OCH ₂ O)C ₆ H ₄ C(CH ₃) ₂ CN (90)	688
(Contd.)	2,5-(CH ₃) ₂ C ₆ H ₃ CH ₂ CN C ₆ H ₃ CH(C ₂ H ₃)CN	CH,Br	50% aq NaOH.	Et ₂ O or C ₆ H ₆	2,5-(CH ₃) ₂ C ₆ H ₃ CH(CH ₃)CN (67) C ₆ H ₃ C(CH ₃)(C ₂ H ₃)CN (69)	649 592
			³ % NCH(CH ₃)C ₆ H ₁₁			
		СН	NaNH ₂	Et ₂ O	" (85)*	691
		CH ₂ Cl ₂ CH ₂ Br ₂	NaH 50% aq NaOH, [C6H3CH2N(C2H3)3]Cl "	Ē.	$C_6H_5C(C_2H_5)(CH_2CI)CN$ () $C_6H_5C(C_2H_5)(CH_2Br)CN$ (71)	692 693 693-693
	. 1				9	
	TT.	СН,І	LDA	Et ₂ O, HMPA, -70°	(75)*	m
	CH(C4H9-n)CN		NaNH2	NH3, dioxane	(-)	272
	1-C4H9COCH2CH(C2H3)CN	C ₂ H ₃ Br	LDA	Et ₂ O, HMPA, -70°	$1-C_4H_9COCH_2C(C_2H_3)_2CN$ (76)	111
	3-(C ₂ H ₃ O)C ₆ H ₄ CH ₂ CN 4-(C ₂ H ₃ O)C ₆ H ₄ CH ₂ CN	4	NaNH2 50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	2	3-C ₂ H ₅ OC ₆ H ₄ C(C ₂ H ₅) ₂ CN () 4-C ₃ H ₅ OC ₆ H ₄ CH(C ₃ H ₅)CN ()	675 696
		ne	NaNH ₂	-	" (60)	671
	4-CH,COC,H,CH,CN	-		Et.O	$4-C_2H_3OC_8H_4C(C_2H_3)_2CN$ (70) $4-(CH_3CO)C_4H_4CH(C_3H_3)_2CN$ (85)	671
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	-	NaOC ₂ H ₅	C2H3OH	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(C ₂ H ₃)CN (82)	698
		THI CHI	NaNH2	DME	" (91) " ()	699
		(CH ₃) ₂ SO ₄	NaNH ₂	C ₆ H ₆	(-) 3.4-(CH ₃ O) ₂ C ₈ H ₃ CH(CH ₃)CN (59)	589
	2,5-(CH3)2C6H3CH2CN	C2H3Br'		Et2O or C6H6	2,5-(CH ₃) ₂ C ₆ H ₃ CH(C ₂ H ₃)CN (75)	649
	C ₆ H ₃ CH(C ₂ H ₃)CN	CI(CH ₂) ₂ CI Br(CH ₂) ₂ Br	a first state of the second state of the secon	C ₆ H ₆	$C_6H_5C(C_2H_5)[(CH_2)_2CI]CN$ (50) C_H_C(C_H_)[(CH_3)_BrJCN (6)	599
		C ₂ H ₃ Br	50% aq NaOH. [C.H.CH1N(C2H3)3]Cl	÷	$C_6H_5C(C_2H_5)_2CN$ (70)	66
		H ₂ C-CH ₂	NaNH2	Et ₂ O	$C_{6}H_{3}C(C_{2}H_{3})[(CH_{2})_{2}OH]CN (-)$	673,674
					С, н,	
		-		NH3	<u>−</u> +C ₆ H, ()	179
					O NH	
				3. C	$C_{s}H_{s}Cl-4$ ()	179
	4-CIC ₆ H ₄ CH(C ₂ H ₅)CN				LO NH	
	C ₆ H ₃ CH(CN)CH ₂ CN	CICH ₂ CN		Et ₂ O	C ₆ H ₅ C(CH ₂ CN) ₂ CN (-)	603
	CH[(CH ₂) ₂ N(CH ₃) ₂]CN	C ₂ H ₃ Br	•	151	C[(CH ₂) ₂ N(CH ₃) ₂](C ₂ H ₃)CN (77)	567
	C ₆ H ₃ CH(C ₂ H ₃)CN	n-C3H3Br	" 50% aq NaOH, [C4H4CH3N(C2H4)3]Cl	C6H6	$C_{6}H_{3}C(C_{2}H_{3})(C_{3}H_{7}-n)CN$ (73)	583
		í-C3H7Br			$C_{4}H_{5}C(C_{2}H_{5})(C_{3}H_{7}-i)CN$ (43)	66
		CH ₂ =CHCH ₂ Br	NaNH.		$C_6H_5C(C_2H_5)(CH_2CH=CH_2)CN$ (93)	66
		Ck(CH ₂) ₃ Br		CAHA	$C_6H_5C(C_2H_5)(CH_2C\equiv CH)CN$ (60-88) $C_6H_5C(C_5H_5)(CH_5)_5C(CN) = 1$ (56). [C_4H_5C(C_5H_5)(CN)CH_3,CH_5 II (30)	613
			LiN(C ₂ H ₃) ₂	Et ₂ O	1 (68)	557
		Br(CH ₂),Br	NaM11	CeHe	I (56) I (54) II (20)	701,702
			50% aq NaOH, [C6H3CH3N(C2H3)3]Cl	÷	C ₆ H ₂ C(C ₂ H ₃)(CH ₂ CH=CH ₂)CN (-), C ₆ H ₃ C(C ₂ H ₃)[(CH ₂) ₃ Br]CN (-), [C ₆ H ₅ C(C ₂ H ₃)(CN)CH ₂] ₂ CH ₂ (negligible)	693
-

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C10	(C,H,CH(C,H,)CN	BrCH ₂ CO ₂ CH ₃	NaNH ₂	9	C6H3C(C3H3)(CH2CO2CH3)CN (-)	677
(Contd.)	4-C2H3C6H4CH2CN	Cl(CH ₂) ₃ Br	•		$4-C_2H_3C_8H_4CH[(CH_2)_3CI]CN (-)$	614
	2,3-(CH ₃) ₂ C ₆ H ₃ CH ₂ CN	I-C3H7Br		Toluene	$2,3-(CH_3)_2C_6H_3CH(C_3H_7-i)CN$ (80)	703
	2,5-(C2H3O)(CI)C6H3CH2CN	n-C ₃ H ₇ Br		NH,	$2,5-(C_2H_5O)(CI)C_6H_3CH(C_3H_7-n)CN (-)$	704
	3,4-(CH3O)2C6H3CH2CN	i-C ₃ H ₇ Br	-	DME	$3,4-(CH_3O)_2C_6H_3CH(C_3H_7-i)CN$ (91)	699
	2,5-(CH ₃) ₂ C ₆ H ₃ CH ₂ CN	n-C ₃ H ₇ Br		Et2O or C6H6	$2.5-(CH_3)_2C_6H_3CH(C_3H_7-n)CN$ (53)	649
	S. Carlo L. Carlo San	I-C3H7Br			$2,5-(CH_3)_2C_6H_3CH(C_3H_7-i)CN$ (70)	649
	4-F2CHCF2OC6H4CH2CN		50% aq NaOH, dicyclohexyl-18-crown-6	C ₆ H ₆	$4-F_2CHCF_2OC_6H_4CH(C_3H_7-i)CN (74)$	678
	1,4-C ₆ H ₄ (CH ₂ CN) ₂	CH ₂ =CHCH ₂ Br	NaH	DMSO	$1.4-C_6H_4[CH(CH_2CH=CH_2)CN]_2$ (33) O	705
	X		LDA	FLO HMPA - 70°	× (71)	
	CN CN	Ci(Chi))bi			(CH.),CI	
	\square	P.V.	NaNH.			567
	S CH[(CH ₂) ₂ N(CH ₃) ₂]CN	50			$\sum_{S} C[(CH_2)_2N(CH_3)_2](R)CN$	
			the second development and		$I, R = C_{12} C_{12} C_{11} C_{11} C_{12} C_{11} C_{12} $	
	2-(2-Pyridyl)-4-pentenenitrile	CH2=CHCH2Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$(2-C_{3}H_{4}N)C(CH_{2}CH=CH_{2})_{2}CN$ (92)	569
		n-C ₃ H ₇ Cl	NaNH ₂	Et ₂ O	(2-C ₅ H ₄ N)C(CH ₂ CH=CH ₂)(C ₃ H ₇ -n)CN (71)	572
		i-C3H,Cl			$(2-C_{3}H_{4}N)C(CH_{2}CH=CH_{2})(C_{3}H_{7}-i)CN$ (62)	572
	2-(4-Pyridyl)valeronitrile	CH2=CHCH2CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$(4-C_{5}H_{4}N)C(C_{3}H_{7}-n)(CH_{2}CH=CH_{2})CN$ (89)	569
	CH-CH_CN	í-C3H3I	47% aq NaOH. [C6H3CH2N(C2H3)3]Cl		$CH(C_3H_7-i)CN (60)$	706
	2-CH3O2CC6H4CH2CN	n-C4H9Br	LICA	THF 78°	2-CH3O3CC+H4CH(C4H9-n)CN (79)	707
	1,4-C6H4(CH2CN)2	i-C4H9Br	NaH	DMSO	1,4-C ₆ H ₄ [CH(C ₄ H ₆ -i)CN] ₂ (27)	705
	2,5-(CH3)2C6H3CH2CN	n-C4H9Br	NaNH ₂	Et,O or CAHA	2,5-(CH3)2C+H3CH(C+H9-1)CN (77)	649
		sec-C4H9Br			2,5-(CH1)2C+H1CH(C+H0-sec)CN (82)	649
	C,H,CH(C2H,)CN	n-C4H9CI		Toluene	$C_{4}H_{4}C(C_{3}H_{4})(C_{4}H_{6}-n)CN$ (87)	42
		*	NaH		" (73-86)	42
		n-C.H.Br	NaNH ₂	C.H.	" (63)	649
		•	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	" (26)	66
		sec-C+HoCl	NaNH ₂	Toluene	CaHaC(CaHa)(CaHa-sec)CN (93)	42
			NaH		" (77-80)	42
		I-C.H.CI	NaNH ₂	Toluene	C+H+C(C+H+)(C+H++i)CN (90)	42
			NaH		" (80)	42
			50% aq NaOH. [C.H.CH2N(C2H3)]Cl	-	" (40)	66
		1-C.H.CI	NaNH ₂	Toluene	C.H.C(C.H.)(C.Ht)CN (8)	42
		CI(CH2)4CI		C.H.	C.H.C(C.H.)[(CH.).C]]CN 1 (44)	701,702
			50% aq NaOH. [C.H. CH1N(C1H3)]CI		1 (65)	693
		•	NaNH ₂		1 (44) [C.H.C(C.H.)(CN)CH.CH.1, II (41)	700
		CI(CH ₂) ₄ Br	$LiN(C_2H_5)_2$	EL-O	1 (68)	549
		Br(CH ₂) ₄ Br	50% aq NaOH. [C.H. CH1N(C2H3)]CI	-	C+H+C(C+H+)[(CH+)+Br]CN (47). II (-)	693-695
		I(CH ₂) ₃ CN	NaNH ₂	Toluene, Et,O	$C_{4}H_{4}C(C_{3}H_{4})I(CH_{3})_{3}CNICN(-)$	708
		(CH3)2N(CH2)2CI			C.H.C(C,H.)[(CH.),N(CH.),]CN (61)	599
	CAH3CH(CN)CH2CN	BrCH2CO2C2H,		Et ₂ O	C6H3C(CH2CO2C2H3)(CN)CH2CN (62)	603
	CH[(CH ₂) ₂ N(CH ₃) ₂]CN	RX			C[(CH ₂) ₂ N(CH ₃) ₂](R)CN	
					$I, R = C_4 H_9 - n$ (30)*	567
					$I, R = (CH_2)_4 CI (-)$	567
		The second second			$I, R = CH_2CO_2C_2H_5, X = Br$ (52)	568
	2.5-(CH ₃) ₂ C ₆ H ₃ CH ₂ CN	n-C ₃ H ₁₁ Br	NaNH ₂	Et2O or C6H6	2,5-(CH ₃) ₂ C ₆ H ₃ CH(C ₅ H ₁₁ -n)CN (63)	649
	C ₆ H ₃ CH(C ₂ H ₃)CN	1.000	50% aq NaOH. [C6H3CH2N(C2H3)3]CI	-	$C_{9}H_{5}C(C_{2}H_{5})(C_{5}H_{11}-n)CN$ (52)	66
		í-C _s H ₁₁ Br			$C_{9}H_{3}C(C_{2}H_{3})(C_{3}H_{11}-i)CN$ (62)	66
		CI(CH ₂) ₃ CI	NaNH ₂	C.H.	$C_6H_5C(C_2H_5)[(CH_2)_5CI]CN$ (48),	700-702
					$[C_{4}H_{5}C(C_{2}H_{5})(CN)(CH_{2})_{2}]_{2}CH_{2}$ [(33)	144
		Br(CH ₂) ₃ Br	INV NOU TO U OU NO U VIO		$C_6H_5C(C_2H_5)[(CH_2)_5B_7]CN$ (40), 1 (44)	700
			50% aq Maon, [C6H3CH2M(C2H3)3]CI	-	$C_{6}H_{5}C(C_{2}H_{5})[(CH_{2})_{5}Br]CN$ (49), I (23)	093-095

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s
C ₆ H ₃ CH(C ₃ H ₅)CN	CH3CHBrCO3C3H3 Br(CH2)2CO2C2H3	NaNH ₂	El2O C6H6	C ₆ H ₃ C(C ₂ H ₃)[CH(CH C ₆ H ₃ C(C ₂ H ₃)[CH(CH ₂) ₂
U _{CN}	+C ₃ H ₁₁ Br	LDA	Et2O, HMPA, - 70°	L'CH.
CH,0 CN	COL (CH ₂) ₂ Br	NaNH ₂	NH,	CH O
1,4-C ₆ H ₄ (CH ₂ CN) ₂ 1,3-C ₆ H ₄ (CH ₂ CN) ₂ 2,5-(CH ₃) ₂ C ₆ H ₃ CH ₂ CN C ₆ H ₃ CH(C ₂ H ₃)CN	C ₆ H ₁₁ Br #-C ₆ H ₁₂ Br Br(CH ₂) ₆ Br (C ₂ H ₂ O) ₂ CHCH ₂ Br	NaH " NaNH ₂ 50% aq NaOH, [C ₆ H ₅ CH ₃ N(C ₂ H ₅) ₅]Cl NaNH ₂	DMSO El ₂ O or C ₆ H ₆ C ₆ H ₆	1.4-C ₆ H ₄ [CH(C ₆ H _{1.1}) 1.3-C ₆ H ₄ [CH(C ₆ H _{1.1}) 2.5-(CH ₃) ₂ C ₆ H ₃ CH(C ₇ C ₆ H ₅ C(C ₂ H ₃)(C ₆ H _{1.3} - C ₆ H ₅ C(C ₂ H ₃)(CH ₃) C ₆ H ₅ C(C ₂ H ₃)[CH ₂ C
	(C ₂ H ₃) ₂ N(CH ₃) ₃ Cl ~ CICH ₂ CO ₂ C ₄ H ₉ -1 C ₃ H ₃ CHBrCO ₃ C ₃ H ₃ BrCH ₂ CH ₂ CC ₃ C ₄ H ₃ -1	" LiNH2 50% aq NaOH, [C6H2CH2N(C2H3)3]Cl " NaNH2 NaOH, dimethylpiperidinium sulfate	Tolvene 	C ₆ H ₃ C(C ₂ H ₃)[(CH ₂) ₂ " (58) " (41) C ₆ H ₃ C(C ₂ H ₃)(CH ₂ CC C ₆ H ₃ C(C ₂ H ₃)[CH(C ₂ C ₄ H ₂ C(C,H ₃)[CH(C ₂
2,5-{CH3O)2C6H3CH2CN	CH2CH	NaNH2	С.н.	2,5-(CH3O)2C6H3CH(0
C ₆ H ₅ CH(C ₂ H ₅)CN	CH3 n-C3H13Br	50% aq NaOH, [CsH3CH3N(C3H3)3]Cl or 30% aq KOH, [(CH3=CHCH3)3N(CH3)3]50.	~	C ₆ H ₅ C(C ₂ H ₅)(C ₇ H ₁₅ -
	C,H,CH,CI	50% aq NaOH. 2% CH ₃ CH ₃ CH ₃ 50% aq NaOH. [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₂]Cl	-	C6H3C(CH2C6H3)(C2)
	C403CD200	4% N(C ₂ H ₃)CH(CH ₃)CHOHC, CH ₃		- (100)
CH[(CH ₂) ₂ N(CH ₃) ₂]CN	C°H²CH²CL	NaNH ₂		CI(CH,),N(C
2-(2-Pyridyl)-4-pentenenitrile	C ₆ H ₃ CH ₂ Cl		Et ₂ O	(2-C3H4N)C(CH2CH=
CH,O	(CH ₂) ₂ Br	-	NH3	CN (N
C₄H₃CH(C₃H₃)CN	C ₆ H ₃ O(CH ₂) ₂ Br (C ₂ H ₃ O) ₂ CH(C ₂ H ₃)Br n-C ₄ H ₉ CHBrCO ₃ C ₂ H ₃ C ₆ H ₃ CO ₂ (CH ₂) ₂ Br (C ₂ H ₃ O) ₂ CHCH(C ₃ H ₇ -n)Br		Et ₂ O " C ₄ H ₄ , DMF Et ₂ O	C ₄ H ₂ Q(C ₃ H ₃)[(CH ₁) ₃ C C ₄ H ₃ Q(C ₃ H ₃)[CH ₁) ₅ C C ₄ H ₃ Q(C ₃ H ₃)[CH ₁) ₅ C C ₄ H ₃ Q(C ₃ H ₃)[(CH ₁) ₃ C C ₄ H ₃ Q(C ₃ H ₃)[(CH ₁) ₅ C

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

Product(s) and Yield(s) (%)	Refs.
C ₆ H ₃ C(C ₂ H ₃)[CH(CH ₃)CO ₃ C ₂ H ₃]CN (53)	683-685
C ₆ H ₅ C(C ₂ H ₅)[(CH ₂) ₂ CO ₂ C ₂ H ₅]CN (-)	682
(79)*	111
C,Huri	
CN O	
(CH ₂) ₂ (96)	173
СН,О	
$1.4-C_6H_4[CH(C_6H_{11})CN]_2$ (47)	705
$1,3-C_6H_4[CH(C_6H_{11})CN]_2$ (-)	705
$2.5 - (CH_3)_2 C_6 H_3 CH(C_6 H_{13} - n) CN$ (74)	649
$C_{6}H_{5}C(C_{2}H_{5})(C_{6}H_{13}-h)CN$ (80) $C_{6}H_{5}C(C_{2}H_{5})(C_{6}H_{13}-h)CN$ (30) $C_{5}H_{5}C(C_{5}H_{5})(CN)(CH_{5})$ (20)	700-702
C4H4C(C3H4)[CH4CH(OC3H4)]CN (76)	709.686.
	638,637
$C_6H_3C(C_2H_3)[(CH_2)_2N(C_2H_3)_2]CN$ (53)	599
- (58) - (41)	663
(41) C.H.C(C.H.)(CH.CO.C.H. (YCN (77)	78.85
$C_{4}H_{4}C(C_{4}H_{4})[CH(C_{4}H_{4})CO_{4}C_{4}H_{4}]CN$ (63)	683-685
C ₆ H ₃ C(C ₂ H ₃)(CO ₂ H)CH ₂ CH ₂ CO ₂ H (-) ⁶	710
\bigcirc	
	711
C+H+C(C+H+)(C+H+++n)CN (66)	66
C6H3C(CH2C6H3)(C2H3)CN (81)	592
·· (94)	66 85 68
" (100)	592
C[(CH ₂) ₂ N(CH ₃) ₂](CH ₂ C ₆ H ₃)CN ⁽⁶¹⁾	567
(2-C ₃ H ₄ N)C(CH ₂ CH=CH ₂)(CH ₂ C ₆ H ₃)CN (54)	572
(CH.) (91)	713
CH,0	
C6H3C(C2H3)[(CH2)2OC6H3]CN (56)	599
$C_{6}H_{3}C(C_{2}H_{3})[CH(C_{3}H_{3})(OC_{2}H_{3})_{2}]CN$ (60)	689,685
$C_4H_3(C_2H_3)[CH(C_4H_{4^{-H}})CO_2C_2H_3]CN (60-65)$	712,683,685
$C_4H_4C(C_3H_4)[CH(C_3H_4-n)CH(OC_3H_4)]CN (49)$	689,685

110

No. of

C Atoms

C₁₀ (Contd.)

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions
C ₁₀ (Contd.)	R ¹ R ²	сн,о,с	NaNH ₂	NH,
	3,4-(CH3O)2C6H3CH2CN	3,4,5-(CH ₃ O) ₃ C ₆ H ₂ CH ₂ Cl		NH3. Et2O
	C6H3CH(C2H3)CN C6H3CH(C2H3)CN	(C ₂ H ₃ O) ₂ CHCH(C ₄ H ₆ -n)Br C ₆ H ₃ CH ₂ N(CH ₃) ₂ Cl		Et ₂ O -
	C ₆ H ₃ CH(C ₂ H ₃)CN	N-(3-Bromopropyl)phthalimide	C.	C ₆ H ₆ , DMF
	<0 √0 √(CH₂),CH(CH,)CN	<i>ŀ</i> -С ₆ H ₁ , ₂ C(CH ₃)(CN)(CH ₂) ₃ Cl	LiN(C ₂ H ₃) ₂	НМРА
	C ₆ H ₃ CH(C ₂ H ₃)CN	I-Chloroacenaphthene		-
	СН30	1-Bromoacenaphthene $(C_6H_5)_2CHBr^4$	NaNH2	Et 20 -
	CN	CH,CO2		NH3, THF
	3,4-(Cl)(C2H3O)C6H3CH2CN	3,4-(CH ₃ O) ₂ C ₆ H ₃ (CH ₂) ₂ N(CH ₃)(CH ₂) ₃ Cl OC ₆ H ₉ -r	-	Toluene
	сн,о	(CH ³) ³ 1	NaH	DMF
с,,	2-(CH3OCH2O)C6H4CH2CN 4-(n-C3H7O)C6H4CH2CN	и (С ₆ Н5СН ₂)2N(СН2)2Cl СН3Г		DMSO
	C ₆ H ₃ CH(C ₃ H ₇ - <i>i</i>)CN	СН31	NaH	7
	CN	Сн,С	LiN(C ₂ H ₅) ₂	DME
		СНЪІ	-	
		C2H3Br	NaNH,	NH,

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

ditions	Product(s) and Yield(s) (%)	Refs.
	ÇN	
	$\mathbf{R}^{I} \underbrace{(CH_3)_3 C(CH_3)(CO_2 CH_3) CH = CH_2}_{I}$	169,170
	$I, R^{2} = OCH_{3}, R^{2} = H^{2} (73)$ $I, R^{1} = H, R^{2} = OCH_{3} (76)$	
	3,4-(CH ₃ O) ₂ C ₈ H ₃ CH[CH ₂ C ₈ H ₂ (OCH ₃) ₃ -3,4,5]CN (66), 3,4-(CH ₃ O) ₃ C ₈ H ₃ CF(CH ₃ C ₈ H ₂ (OCH ₃) ₃ -3,4,5] ₂ CN ()	589
	C ₆ H ₅ C(C ₁ H ₅)[CH(C ₆ H ₆ -n)CH(OC ₂ H ₅) ₂]CN (45) C ₆ H ₅ C(C ₂ H ₅)[(CH ₂) ₂ N(CH ₃)CH ₂ C ₆ H ₅]CN (-)	689,685 599
	۹ م	
	$C_{6}H_{5}C(C_{2}H_{5})(CN)(CH_{2})_{3}N$ (59)	643,716
	ď	
	(84) (CH ₂),C(CH ₂),C(CH ₂),C(CH ₂)(CN)C ₆ H ₁ ,-()CN	168
	C(C2H3)(C6H3)CN	
	(71)	81
	" (–) C ₆ H ₅ C(C ₂ H ₅)[CH(C ₆ H ₅) ₂]CN (97)	666 66
	CH.005 (95)	174,175
	спрод	
	3,4-Cl(C2H3O)C6H3CH[(CH2)3N(CH3)(CH2)2C6H3(OCH3)2-3,4]CN (69)	717
	OC4He-1	
	(49)	171
	Д Ссн,	
	2-(CH ₃ OCH ₂ O)C ₆ H ₄ CH[(CH ₂) ₂ N(CH ₂ C ₆ H ₅) ₂]CN (75)	688
	$4 - (n - C_3 H_2 O) C_6 H_4 C H (C H_3) C N$ (53) $4 - (n - C_3 H_2 O) C_6 H_4 C (C H_3)_2 C N$ (67)	671 671
	C6H3C(CH3)(C3H3-i)CN (40)	692
	CN I, CH, II	176,718
	CH, CN	
	I: II = 81:19 (82-96) I: II = 72:28 (01)	176.718
	1.11 - 74.40 (71)	1.0,710

113

112

C ...

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	Ŷ				ĥ	
C ₁₁ (Contd.)	V CN		LDA	Et ₂ O, HMPA, - 70°	(74)	m
	4-(n-C3H7O)C6H4CH2CN	C ₂ H ₃ I ^c	NaNH ₂	-	$1 C_2H_3$ 4-(n-C_3H_7O)C_6H_4CH(C_2H_3)CN (52)	671
	3,4,5-(CH3O)3C6H3CH3CN 3-CH3OC6H4CH(C3H3)CN C6H3CH(C3H3-n)CN	" (СН,3),504 СК(СН,2),2СІ Н,2С—СН2		C.H. E120	$\begin{array}{llllllllllllllllllllllllllllllllllll$	671 589 720 673,674
	C ₆ H ₃ CH(C ₃ H ₁ -i)CN	о сн,осн,сі н,с-сн,	50% aq NaOH, [C6H3CH3N(C2H3)3]Cl NaNH3	Et ₂ O	$C_{4}H_{3}C(C_{3}H_{7}-i)(CH_{3}OCH_{3})CN$ (7) $C_{4}H_{5}C(C_{3}H_{7}-i)[(CH_{3})_{2}OH]CN$ (-)	72 673,674
	4-(I-C₃H₄)C₄H₄CH₂CN	CI(CH ₂) ₃ Br		-	4(-/-C ₃ H ₄)C ₆ H ₄ CH[(CH ₂) ₃ CI]CN (−)	614
	CN	[(CH ₃) ₃ O]BF ₄	LiN(C ₂ H ₃) ₂	DME		176
	3-CH3OC6H4CH(C3H3)CN C6H3CH(C3H3-n)CN	ŀС,Н,Вr Н₂С−СНСН,	NaNH,	_ Ei2O	$1:11 = \sim 42:58 (24-28)$ 3-CH ₃ OC ₆ H ₄ C(C ₂ H ₃)(C ₃ H ₇ -i)CN (-) C ₆ H ₃ C(C ₃ H ₇ -n)[CH ₂ CH(OH)CH ₃]CN (70) ⁴	675 720
	2-(4-Pyridyl)hexanenitrile	O HC≡CCH₂Br Cl(CH₂)₃Br	:	E12O, C6H6 C6H6	$C_{6}H_{5}C(C_{3}H_{7}-n)(CH_{2}C\equiv CH)CN$ (60-88) $C_{6}H_{5}C(C_{3}H_{7}-n)[(CH_{2})_{5}Cl]CN$ (-) (4- $C_{3}H_{4}N)C(C_{6}H_{9}-n)(CH_{2}CH= CH_{2})CN$ (93)	613 721 569
	N CHICH ANN	СН₂=СНСН₂СІ	1.41	-	(4-C ₃ H ₄ N)C(C ₄ H ₉ -i)(CH ₂ CH=CH ₂)CN (91)	569
	CH(CH ₂ CH=CH ₂)CN	-	50% aq NaOH, [C6H3CH3N(C2H3)3]Cl	4	(89)	569
	3-CH3OC6H4CH(C2H3)CN C6H3CH(C3H7-n)CN	sec-C4H9Br C2H3O(CH3)2Cl BrCH2CO3C2H3 Br(CH3)3CO2C2H3 CH3CHBrCO2C2H3	NaNH2	C ₆ H ₆ C ₆ H ₆ or El ₂ O	$\begin{array}{llllllllllllllllllllllllllllllllllll$	675 720 722 682 683-685,
	C ₆ H ₅ CH(C ₃ H ₇ -i)CN	(CH ₃) ₂ NCH(CH ₃)CH ₂ Cl		C.H.	C ₆ H ₅ C(C ₃ H ₇ -i)[CH ₂ CH(CH ₃)N(CH ₃) ₂]CN (-)	720 723
	CH ₃ O CN	COCH2)2Br		NH,	CH ₃ O CN (CH ₂) ₂ O (73)	172,724
	C ₆ H ₃ CH(C ₃ H ₇ -n)CN	Ğ	CioHaNa	THF	Γ C(C ₆ H ₃)(C ₃ H ₃ -n)CN (-)	198
		(C ₂ H ₃ O) ₂ CHCH ₂ Br BrCH ₂ CO ₂ C ₄ H ₇ - <i>t</i> C ₅ H ₂ CHBrCO ₂ C ₄ H ₇ - <i>t</i>	NaNH2	Et ₂ O FLO	$C_{6}H_{5}C(C_{3}H_{7}-n)[CH_{2}CH(OC_{3}H_{5})_{2}]CN$ (78-80) $C_{6}H_{5}C(C_{3}H_{7}-n)(CH_{2}CO_{2}C_{6}H_{6}-1)CN$ (74) $C_{7}H_{7}C(CH_{7}-n)[CH(C,H_{7}CO_{7}C_{7}H_{7})CN]$ (51)	686,637,72: 78 683-685
	C ₆ H ₃ CH(C ₃ H ₇ -i)CN	4-(2-Chloroethyl)morpholine		C.H.		681
	C ₆ H ₃ CH(C ₃ H ₇ -n)CN	BrCH2CO2C4H9-1 C6H3CH2CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl "	-	$C_6H_3C(C_3H_7-i)(CH_3CO_2C_4H_6-i)CN$ (56) $C_6H_3C(C_3H_7-i)(CH_2C_6H_3)CN$ (69)	78 68

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
c.,	C.H.CH(C.Hn)CN	(C,H,O),CH(CH,),Cl	NaNH,	Et2O, C.H.	C ₆ H ₅ C(C ₃ H ₇ -n)[(CH ₂) ₂ CH(OC ₂ H ₃) ₂]CN (75)	644,645
(Contd.)	en sente juit de la	(C2H3O)2CHCH(CH3)Br		Et ₂ O	$C_6H_5C(C_3H_7-n)[CH(CH_3)CH(OC_2H_5)_2]CN$ (48)	689,685
		n-C3H7CHBrCO2C2H3		-	C ₆ H ₅ C(C ₃ H ₇ -n)[CH(C ₃ H ₇ -n)CO ₂ C ₃ H ₃]CN (62) Q	683-685
		N-(3-Bromopropyl)succinimide		C.H. DMF	C ₆ H ₅ C(C ₅ H ₇ -n)(CN)(CH ₂) ₃ N (45)	643
	C.H.CH(C.Hi)CN	CaH3CH2CI	50% aq NaOH. [C.H.CH2N(C2H3)]Cl	<u>9</u> .	C6H5C(C3H7+i)(CH2C6H5)CN (39)	68
	2-Quinolylacetonitrile	C°H'CH'OH.	Na. CH3CO2CH2C6H3	-	$(2-C_9H_6N)CH(CH_2C_6H_3)CN$ (54)	309,313
	C ₀ H ₃ CH(C ₃ H ₃ -n)CN	(C ₂ H ₃ O) ₂ CHCH(C ₂ H ₃)Br	NaNH2	El ₂ O	$C_{6}H_{5}C(C_{3}H_{7}-n)[CH(C_{2}H_{5})CH(OC_{2}H_{5})_{2}]CN$ (51)	089,085
		C.H.CO.(CH.).Br	-	C.H. DMF	$C_{4}H_{2}C(C_{3}H_{2}+n)f(CH_{4})_{2}OCO_{2}C_{2}H_{3}f(CH_{4})(00-05)$	714,715
		(C,H,O),CH(C,H,-n)Br	-	Et,O	$C_{4}H_{4}C(C_{4}H_{7}-n)[CH(C_{4}H_{7}-n)(OC_{3}H_{4})_{3}]CN$ (61)	689,685
	3.4.5-(CH ₃ O) ₃ C ₆ H ₂ CH ₂ CN	3.4.5-(CH ₃ O) ₃ C ₆ H ₂ CH ₂ Cl	-	NH3. Et2O	3,4,5-(CH ₃ O) ₃ C ₆ H ₂ CH(CN)CH ₂ C ₆ H ₂ (OCH ₃) ₃ -3,4,5 (50), 34,5-(CH ₃ O) ₃ C ₆ H ₂ C(CN)[CH ₂ C ₆ H ₂ (OCH ₃) ₃ -3,4,5], (-)	589
	C.H.CH(C.Hn)CN	(C2H3O)2CHCH(C4H9-n)Br		Et ₂ O	$C_{6}H_{3}C(C_{3}H_{7}-n)[CH(C_{4}H_{9}-n)CH(OC_{2}H_{3})_{2}]CN$ (42)	689,685
		6-(Chloromethyl)tetralin		Et ₂ O	C ₆ H ₅ C(C ₃ H ₇ - <i>n</i>)(CH ₂ C ₁₀ H ₁₁ -6)CN (38) Q	343
		N-(3-Bromopropyl)phthalimide	-	C ₆ H ₆ , DMF	C ₆ H ₅ C(C ₃ H ₇ -n)(CN)(CH ₂) ₃ N (58)	643,716
	CoH3CH(C3H7-i)CN	[(C2H3)2NCH2]2CHCl		Toluene	C ₆ H ₃ C(C ₃ H ₃ -i)[CH(CH ₂ N(C ₂ H ₃) ₂) ₂]CN (-)	665
		3,4-(CH_3O)C&H3CH2N(CH3)(CH2)3Cl 3,4-(CH3O)2C&H3(CH2)2N(CH3)(CH2)3Cl		1	C ₆ H ₅ C(C ₃ H ₇ -i)[(CH ₂) ₃ N(CH ₃)C ₆ H ₃ (OCH ₃) ₂ -3,4]CN () C ₆ H ₅ C(C ₃ H ₇ -i)[(CH ₂) ₃ N(CH ₃)(CH ₃) ₂ C ₆ H ₃ (OCH ₃) ₂ -3,4]CN (76)	725b 717
	CH2CN				C(CH ₃),CN	
C13	CH,CN	СН3	NaH	DMSO	(-) + (C(H ₃) ₂ (-)	726
					ČN (C)	
	CH[(CH ₂) ₂ N(C ₂ H ₃) ₂]CN	CHJI	NaNH ₂	-	$\binom{1}{5}$ C[(CH ₂) ₂ N(C ₂ H ₃) ₂](CH ₃)CN ⁽⁶³⁾	567
	CH2CN				CH(CH,)CN	
				Et ₂ O or C ₆ H ₆	(56)	727
	1-Naphthylacetonitrile	СН'і	(2) 2 () () () () () () () () (I-C10H7CH(CH3)CN I. I-C10H7C(CH3)2CN II	
			NaH	DMF	I (-)	634
			50% aq NaOH, [C6H3CH2N(C2H3)]CI		1 (92)	97
		-	I-C.H. ONa	C.H.	II (64) I (41)	584
		-	NaNH ₂	Et,O	1 (98)	728-730
				1. A. C. M.	11 (94)	729
			CH,Li	Et,O, THF	11 (95)	44
	2-Naphthylacetonitrile	CH ₂ Br ₂ CH ₃ I	50% aq NaOH, [CgH3CH2N(C2H3)3]Cl NaNH2	C.H.	$(1-C_{10}H_{7}CH(CN))_{2}CH_{2}$ (80) 2-C_{10}H_{7}CH(CH_{3}CN (91))	97 729
	Cyanomethylferrocene		n-C4H9Li	Et ₂ Q	$2 - C_{10} H_7 - C(CH_3)_2 CN$ (74) FeC(CH_3)_2 CN (60)	49
	CHE(CH ₂) ₂ N(CH ₂) ₄]CN	CH31	NaNH ₂	-	(87)	567
	N				N	
	CHICAH-JCN	СНЪІ		Dioxane	(76) C(CH,)(C ₆ H ₂)CN	731
	4-(I-CAHa)CAHACH-CN	C,H,Br	50% aq NaOH, [C, H, CH, N(C, H,),]Cl	-	4-1-C+H+C+H+CH(C+H+)CN (-)	696

-

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions
C ₁₂ (Conid.)	3-CH ₃ OC ₆ H ₄ CH(C ₃ H ₇ -n)CN	н₂с-сн₂	NaNH ₂	Et ₂ O
	4-CH3C6H4CH(C3H7-i)CN			
	C ₆ H ₃ CH(C ₆ H ₉ -n)CN	•		NH3
	C ₆ H ₃ CH(C ₄ H ₉ -i)CN C ₆ H ₃ CH(CH ₂ CO ₂ C ₂ H ₃)CN	C2H3Br CICH2CN		Et ₃ O
	$ \begin{cases} C_{3}H_{3}CH[(CH_{3})_{2}N(CH_{3})_{2}]CN \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	С,н,в ^{,,} RX [,]	1	С ₆ Н ₆ -
	I-Naphthylacetonitrile	C ₂ H ₃ Br		
		-	50% aq NaOH, [C6H5CH2N(C2H5))]CI	
		C ₂ H ₃ Br Cl(CH ₂) ₂ Cl	NaNH ₂	Et ₂ O Et ₂ O
	2-Naphthylacetonitrile	(CH ₃) ₂ SO ₄ C ₂ H ₃ Br	1-C3H110Na NaNH3	C.H.
	CH,CN	ne	-	Et2O or C6H6
	CH(CN)(CH,)),NO	**	ign -	
	4-{i-C4H4)C6H4CH2CN 3-CH3OC6H4CH(C3H7-n)CN	C((CH ₂),Br H ₂ C - CHCH,		Et ₂ O
	C ₆ H ₃ CH(C ₄ H ₉ - <i>n</i>)CN	í-C3H3Br Br(CH2)3Cl	NaH NaNH2	C ₆ H ₆
	$C_6H_3CH(C_4H_9-i)CN$ $C_6H_3CH(C_4H_9-sec)CN$	i-C₃H₂Br CH₂=CHCH₂Br CH₃S(CH₂)₂Cl		Et 20
	C ₆ H ₅ CH[(CH ₂) ₂ N(CH ₃) ₂]CN	Cl(CH ₂) ₃ Br Cl(CH ₂) ₃ Cl Br(CH ₂) ₃ Br	2	Toluene Et ₂ O
	(S) CH[(CH ₂) ₂ N(C ₂ H ₃) ₂]CN	RX'	0.00	C.H.
	I-Naphthylacetonitrile	n-C ₃ H,Br	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl NaNH ₂	Et ₂ O
		í-C ₃ H ₇ Br		
		CH2=CHCH2Br	50% aq NaOH, [C4H3CH2N(C2H3)3]Cl NaNH2	" Et2O
		:	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl	-

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

nditions	Product(s) and Yield(s) (%)	Refs.
	3-CH ₃ OC ₆ H ₄ C(C ₃ H ₇ -n)[(CH ₂) ₂ OH]CN (8) ⁶	720
	4-CH3C6H6C(C3H++)[(CH3)2OH]CN ()	673,674
	C ₄ H ₉ -n	
	$\int \overline{ \left(- \right)} $	179
	O NH	
	$C_{6}H_{3}C(C_{2}H_{3})(C_{4}H_{9}-i)CN$ (50)	343
	C,H,C(CH2CO2C2H3)(CH2CN)CN (42)	603
	$C_{6}H_{5}C(C_{2}H_{5})[(CH_{2})_{2}N(CH_{3})_{2}]CN$ (85)	681
		\$67
	S C[(CH ₂) ₂ N(C ₂ H ₃) ₂](R)CN	507
	$I R = C_2 H_3$ (63)	
	$I R = (CH_2)_2 CI (53)^{\mu}$	
	1-C10H7CH(C2H3)CN 1.1-C10H7C(C2H3)2CN 11	
	1 (82)	97
	II (31)	97
	1 (96)	728,729
	11 (96) [1-C H CH(CNYCH] (47)	732,729,7
	I-CH-CH(CH-)CN (31)	584
	$2 - C_{10} H_7 CH(C_2 H_3) CN$ (87)	729
	2-C10H7C(C2H3)2CN (76)	729
	CH(C2H3)CN	
	(45)	727
	C(C₂H₂)(CN)(CH₂)₂N 0 (72)	567
	4-1-C4H.C6H4CH[(CH3)3CI]CN (-)	614
	3-CH ₃ OC ₆ H ₄ C(C ₃ H ₇ -n)[CH ₂ CH(OH)CH ₃]CN (72) ⁴	620
	$C_6H_3C(C_4H_9-n)(C_3H_7-1)CN$ (76)	692
	$C_{4}H_{3}O(C_{4}H_{9}\cdot n)[(CH_{2})_{3}O(CN (-))]$	121
	$C_{4}H_{3}C(C_{4}H_{3}-f)(C_{3}H_{3}-f)C(H_{3}-f)(C_{3}-f)(C_{3}H_{3}-f)(C_{3}H_{3}-f)(C_{3}-f)(C_$	343
	C4H4C(C4H4-sec)[(CH3)3CH3]CN (-)	734
	C,H3C[(CH2)2N(CH3)2][(CH2)3CI]CN (68)	735
	" (24) ^y	735
	$C_6H_3C[(CH_2)_2N(CH_3)_2][(CH_2)_3Br]CN$ (26)	735
	$C_{6}H_{5}C[(CH_{2})_{2}N(CH_{3})_{2}](C_{3}H_{7}-i)CN$ (90)	681
		567
	S C[(CH ₂) ₂ N(C ₂ H ₃) ₂](R)CN	
	$I R = C_3 H_{7} i (98)$	
	$I R = CH_2CH = CH_2 (45)$	
	$I R = CH_2C \equiv CH (27)$	
	1-C10H7CH(C3H7-n)CN (90)	97
	⁻ (94)	728,729
	$1-C_{10}H_{7}C(C_{3}H_{7}-n)_{2}CN$ (92)	732,729
	1-C.,HC(C,H1).CN (90)	729
	11 (83)	97
	1-C10H7CH(CH2CH=CH2)CN III (96)	736,728,72
	1-C10H7C(CH2CH=CH2)2CN IV (90)	729
	III (88)	97
	1 (80)	97

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
Cia	1-Naphthylacetonitrile	HC≡CCH₂Br'	NaNH2	Et ₂ O	1-C ₁₀ H ₇ CH(CH ₂ C≡CH)CN (32)	736
(Conta.)	2-Naphthylacetonitrie	I-C3H7Br	· · · · · · · · · · · · · · · · · · ·	NH ₃ , toluene	$2 - C_{10} H_7 - CH(C_3 H_7 - i) CN$ (94)	737,738
				CeHs		729
		CH2=CHCH2Br		÷	$2 - C_{10} H_7 - CH (CH_2 CH = CH_2) CN$ (82)	729
	CH[(CH ₂) ₂ N(CH ₂) ₄]CN	RX ^e	1.2	÷	C[(CH ₂) ₂ N(CH ₂) ₄](R)CN	567
					$R = C_3H_7-i$ (74) $R = CH_2CH=:CH_2$ (78)	
		HC≡CCH₂CI		-		567
	C6H3CH(C4H9-#)CN	n-C4H9I	NaH	НМРА	C ₆ H ₅ Q(C ₄ H ₉ -n) ₂ CN (-)	625
	C ₆ H ₃ CH(C ₄ H ₉ -i)CN	n-C4H9Br	NaNH ₂	Et ₂ O	$C_6H_3C(C_4H_9-i)(C_4H_9-n)CN$ (50)	343
	C ₆ H ₅ CH(C ₄ H ₉ -sec)CN	i-C ₄ H ₉ Br		C ₆ H ₆	$C_6H_3C(C_4H_9-sec)(C_4H_9-i)CN$ (45)	343
	C ₂ H ₃ CH[(CH ₂)N(CH ₃) ₂]CN	sec-C4H9Br		-	C6H3C[(CH2)2N(CH3)2](C4H9-sec)CN (88)	681
	C6H3CH(CH2CO2C2H3)CN	BrCH ₂ CO ₂ C ₂ H ₅	-	Et ₂ O	C ₆ H ₅ C[(CH ₂) ₂ N(CH ₃) ₂][(CH ₂) ₄ Cl]CN (-) C ₂ H ₂ C(CH ₂ CO ₂ C ₂ H ₂) ₅ CN (68)	739 603
	\square	BV	4			
	S CH[(CH ₂) ₂ N(C ₂ H ₃) ₂]CN	NA			S C[(CH ₂) ₂ N(C ₂ H ₃) ₂](R)CN	367
					$I R = C_4 H_{9^{-H}} (63)$ $I R = CH_2 CO_2 C_2 H_2 X = Br (62)$	
	Cyanomethylferrocene	n-C4H9Br	n-C ₄ H ₉ Li	ELO	E-C(C, H.,). CN (56)	49
	1-Naphthylacetonitrile		NaNH ₂	Lijo	1-CH-CH(C.HNCN (95)	728,729
					$1-C_{10}H_{10}C(C_{1}H_{10}-m)+CN$ (71)	664,729,732
			50% aq NaOH, [C.H.3CH2N(C2H3)3]Cl	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-CtoH-CH(CtHe-m)CN (91)	97
		i-C4H9Br	NaNH ₂	Et.O	1-C10H-CH(C.Ha-f)CN (92)	728,729
					1-C10H-C(C+H-1)CN (89)	732,729
		sec-C4H9Br		-	1-C10H2CH(C4H0-sec)CN (94)	728,729
		CH ₃ CH=CHCH ₃ Br ^e			I-C10H7CH(CH2CH=CHCH3)CN (93)	728,729,736
		(CH ₃) ₂ N(CH ₂) ₂ Cl		CsHe	1-C10H7CH[(CH2)2N(CH3)2]CN (92)	740,621
	2-Naphthylacetonitrile	n-C ₄ H ₉ Br			2-C10H7CH(C4H9-n)CN (80)	729
			(AV		$2-C_{10}H_{7}C(C_{4}H_{9}-n)_{2}CN$ (78)	729
		I-C4H9Br	50% aq NaOH, dicyclonexyl-18-crown-6		2-C10H7CH(C4H9-1)CN (79)	738,737
	O O CH CN	sec-C4H9Br		-	$2-C_{10}H_{2}CH(C_{4}H_{9}-sec)CN$ (86)	738,737
		CH Br	NeNH.	FLO CH	CH(C4H9-H)CN (20)	777
	\bigvee	n-Carrent	(and)	El2O of Cene	(38)	121
	\square	RX	-			567
	S CH[(CH ₂) ₂ N(CH ₂) ₄]CN				S C[(CH ₂) ₁ N(CH ₂) ₄](R)CN	507
					$R = C_4 H_{5^{-H}} (56)$ $R = C H_{5^{-H}} (56)$	
	CH(CN)(CH ₂) ₂ N	BrCH ₂ CO ₂ C ₂ H ₃		Et ₂ O	C(CH3CO3C3H3)(CN)(CH3)3N O (66)	567
	4-i-C4H9C6H4CH2CN	2-(Chloromethyl)furan	NaH	DMF	4+-C_H_C_H_CH[CH_1(C_H_0-2)]CN (-)	634
	3-CH3OC6H4CH(C3H7-n)CN	CH3CHBrCO2C2H	NaNH ₂	Celle	3-CH, OC, H, C(C, H, -n)[CH(CH,)CO, C, H,]CN (55)	720
	C ₆ H ₃ CH(C ₄ H ₉ -n)CN	•		Et,O	C4H3C(C4H4-#)[CH(CH3)CO2C3H3]CN (44)	683,685
	C6H3CH(C4H9-i)CN	n-CsH11Cl			$C_{4}H_{4}O(C_{4}H_{4}-i)(C_{4}H_{11}-n)CN$ (50)	343
	1-Naphthylacetonitrile	i-C ₃ H ₁₁ Br			1-C10H7CH(C3H11-0CN (93)	728,729
					1-C10H7C(C3H11-1)2CN (94)	732,729
		(CH ₃) ₂ N(CH ₂) ₃ Cl		C.H.	1-C10H7CH[(CH2)3N(CH3)2]CN (82)	741
		CHNCHNCH CH			1-C ₁₀ H ₇ CH[CH(CH ₃)CH ₂ N(CH ₃) ₂]CN (93)	740
		2-(Chloromethyl)furan	•		$1-C_{10}H_{7}CH[(CH_{2})_{2}N(CH_{3})C_{2}H_{3}]CN$ (88)	740
				Et ₂ O	1-C10H7CH[CH2(C4H2O-2)]CN (72)	736
		CH'CH'CH			1-CLAH-CHICKICH	736
		0			relation(criteril .0.	

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions
C11		2-(Chloromethyl)thiophene	NaNH2	
Conid.)	2-Naphthylacetonitrile	i-CsH11Br		C ₆ H ₆
	CH ₂ CN	$\overline{\bigcirc}$		Et ₂ O or C ₆ H ₆
	C ₆ H ₅ CH(C ₄ H ₉ -π)CN	(C ₂ H ₃ O) ₂ CHCH ₂ Br (C ₂ H ₃) ₂ N(CH ₂) ₂ Cl		Et ₂ O
			LINH2 50% ag NaOH (C.H.CH.N(C.H.).)Cl	Toluene
		C ₂ H ₃ CHBrCO ₂ C ₂ H ₃	NaNH2	Et ₂ O
	C ₆ H ₃ CH(C ₄ H ₉ -sec)CN	4-(2-Chloroethyl)morpholine		C ₆ H ₆
	OC(CH ₁) _a CN	n-C ₆ H ₁₃ Br	K, AIO3	THF, -60°
		(Z)-1-lodo-3-hexene	LDA	THF. – 78°
	CH,0 CH, CN		LiN(C ₂ H ₅) ₂	ТН F, НМРА, — 78°
	I-Naphthylacetonitrile	n-C ₆ H ₁₃ Br	NaNH ₂	Et ₂ O
		C ₆ H ₁₁ Br (C ₃ H ₄) ₅ N(CH ₂) ₅ Cl		-
			50% aq NaOH, [C.H.CH2N(C2H3)3]CI	(A)
		HO ³ C	NaH	C ₆ H ₆
		CH,CF	NaNH ₂	Et ₂ O
		1-(2-Chloroethyl)pyrrolidine		
		4-(2-Chloroethyl)morpholine	0.00	C ₆ H ₆
		-		1 C
		CH ³ Ck		
		N	-	
				Et ₂ O
			-	
			C ₆ H ₁₁ Br'	C ₆ H ₆ or Et ₂ O
	3-CH3OC6H4CH(C3H7-#)CN	n-C3H3CHBrCO2C2H3	NaNH,	C.H.
	ConsCH(CoHo-n)CN	CAN3CH2CI	NaNH,	NH FLO

REACTIONS OF NITRILE-STABILIZED CARBANIONS

123

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

Conditions	Product(s) and Yield(s) (%)	Refs.
	I-C ₁₀ H ₃ CH[CH ₂ (C ₄ H ₃ S-2)]CN (72) 2-C ₁₀ H ₃ CH(C ₃ H ₁₁ -4)CN (78)	664.742.743 729
C ₆ H ₆	CH(C ₅ H ₉)CN (38)	727
	C ₆ H ₅ C(C ₄ H ₉ -n)[CH ₃ CH(OC ₃ H ₃) ₂]CN (80-82)	637,638
	C ₆ H ₅ C(C ₄ H ₉ -n)[(CH ₂) ₂ N(C ₂ H ₅) ₂]CN (44) " (44)	662 663
	C6H3C(C4H9-n)(CH2CO2C4H9-1)CN (69) C3H3C(C4H9-n)[CH(C2H3)CO2C2H3]CN (46)	78 683,685
	C ₆ H ₃ C(C ₅ H ₉ -sec)(CN)(CH ₃) ₂ NO (94)	681
60°	(48)	553
78°	(-) O(CH ₂) ₅ CH[(CH ₂) ₅ CH=CHC ₂ H ₃]CN	165
	сн,о	
MPA, -78°	CN (CH ₂) ₂ (91)	744
	сн,о	
	I-C ₁₆ H ₁ -CH(C ₆ H ₁ ,-n)CN (86) I-C ₁₀ H ₂ CH(C ₆ H ₁)CN (65)	728,729 728,729 740
	= (85)	97
	HO ₂ C CH ₂ CH(C ₁₀ H ₇ -1)CN (-)	634
	1-C1+H-CH(CN)CH: (76)	664,742
	1-C ₁₀ H ₇ CH[(CH ₂) ₂ N(CH ₂) ₄]CN (75)	664,745
	1-C10H,CH(CN)(CH2)2N (93)	740
	1-C ₁₀ H ₇ C(CN) (CH ₁) ₂ N 0] ₂ (-)	740
	1-C ₁₀ H ₇ CH(CH ₂ Ar)CN I	
	1 Ar = C_3H_4N-2 (64) 1 Ar = C_3H_4N-3 (47) 1 Ar = C_3H_4N-3 (47) 1 Ar = C_3H_4N-4 (64)	664,743,746 664,743,745 664,743
Et ₂ O	$CH(C_{6}H_{11})CN $ (49)	727
	3-CH3OC4H4C(C3H3-#)[CH(C3H3-#)CO2C2H3]CN (23) C6H3C(C4H9-#)(CH2C6H3/CN (44)	720 68
0	" (82, 91 % pure)	162

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions
C ₁₂ (Contd.)	C ₄ H ₃ CH(C ₄ H ₉ -n)CN	N-(3-Bromopropyl)auccinimide	NaNH ₂	C ₆ H ₆ , DMF
		(C2H3O)2CHCH(CH3)Br		El 20
	C ₆ H ₃ CH(C ₄ H ₉ -sec)CN C ₆ H ₃ CH(C ₄ H ₉ -i)CN	C ₆ H ₃ CH ₂ Cl	50% aq NaOH, [C,H3CH3N(C3H3)3]Cl	-
			NaNH ₂	C ₆ H ₆
	CH[(CH ₂) ₂ N(C ₂ H ₅) ₂]CN			-
	Cyanomethylferrocene 1-Naphthylacetonitrile	"-C,H,,Br" C,H,CH,CI	n-C₄H₀Li NaNH₃ 50% aq NaOH, [C₀H₃CH₂N(C₃H₅)₃]Cl	Et ₂ O
		- - С "Н,СН,Вг С "Н,СН,ОН″	naH NaNH2 Na, CH3CO2CH2C6H3	C ₆ H ₆ Toluene Et ₂ O
		(CH ₂) ₃ Cl	NaNH2	Et ₂ O
		(C ₁ H ₃) ₂ N(CH ₂) ₃ Cl 1-(3-Chloropropyl)pyrrolidine 1-(2-Chloroethyl)piperidine ⁶	1	C ₆ H ₆
		4-(3-Chloropronyl)morpholine		C H
	A			Cone
	2-Naphthylacetonitrile	л-С,Н,зВґ С,6H3CH2Cl С,6H3CH2OH″	 Na. CH₃CO₂CH₂C₅H₃	Toluene
	CH[(CH ₂) ₂ N(CH ₂) ₄]CN	C&H3CH3Ck	NaNH2	÷ .
	C ₆ H ₃ CH(C ₄ H ₉ -n)CN	(C2H3O)2CHCH(C2H3)Br		Et ₂ O
	I-Naphthylacetonitrile	n-CaH12Br n-CaH12Br n-CaH12Br	Na, CH3CO3CaH17-11	-
		2-CH3OC6H4CH2Cl C6H3(CH3)2Br	Na Cango Corna Na H Na NH	DMF Et ₂ O Toluene
		1-(3-Chloropropyl)piperidine		C.H.
		1,4-Bis(2-chloroethyl)piperzaine		Et ₂ O
	2-Naphthylacetonitrile	#-CaH170H	Na, CH3CO2CaH17-n	-
	CH(CN)(CH ₂) ₂ NO	NC≡CCH,Br	NaNH2	-
	C ₆ H ₅ CH(C ₆ H ₉ -n)CN	(C ₂ H ₃ O) ₂ CHCH(C ₃ H ₃ -n)Br C ₆ H ₃ CO ₂ (CH ₂) ₂ Br	2	Et ₂ O C ₆ H ₆ , DMF
	1-Naphthylacetonitrile	СССН,СГ	NaH	DMF
	C ₆ H ₅ CH(C ₄ H ₉ -n)CN	(C ₂ H ₃ O) ₂ CHCH(C ₄ H ₉ -n)Br	* 1	Et ₂ O

Product(s) and Yield(s) (%)		Refs.
	2	
C ₆ H ₃ C(C ₄ H ₉ -n)(CN)(CH ₂);	N (48)	643
C.H.C(C.H#)[CH(CH.)C	H(OC,H4)-1CN (50)	685,689
C6H3C(C4H9-#)[CH(C3H7-	n)CO2C2H2]CN (50)	683,685
C6H3C(C4H9-sec)(CH2C6H	s)CN (-)	68
C6H3C(C4H9-i)(CH2C6H3)	CN (41)	68
- (48)		343
C[(CH ₂) ₂ N(C ₂ H ₃)	_](CH ₂ C ₆ H ₅)CN ⁽⁵³⁾	567
FcC(CH2C4H4)2CN (70), 1	FoC(CH,C,H)[C(NH)CH,Fo]CN (5)	49
1-C10H7CH(C7H15-#)CN (88)	728,729
I-C10H7CH(CH2C6H5)CN	(95)	97
I-C10H7C(CH2C6H3)2CN	(78)	97
I-C10H2CH(CH2C6H3)CN	(-)	634
" (81) " (81)		747
(96)		728-730
(04)		309,511,515
1-C10H,CH(CN)(CH2)	0 (69)	736
I-C. H-CHI(CH.).N(C.H.	JCN (74)	741
I-C, H,CHI(CH,)N(CH)	JCN (61)	741
I-C10H7CH[(CH2)2N(CH2)	JCN (77)	664,745,740, 743
I-C10H,CH(CN)(CH2)3N	0 (92)	741
2-C10H7CH(C7H15-#)CN (74)	729
2-C10H7CH(CH2C6H3)CN	()	747
- (76)*		309,313,311
	1100	
S C[(CH ₂) ₂ N(CH ₂) ₄]	(CH ₂ C ₆ H ₅)CN (08)	307
	TWOCH LICK (42)	690 695
C H C(C H w)[CH(C H w	NCO.C.H.ICN (56)	683 685
I-C. H-CH(C.H	R4)	728,729
" (67)*		314
* (67)*		312
I-C10H2CH(CH1C6H4OCH)	-2)CN (-)	634
1-C10H7CH[(CH2)2C6H3]C	N (90)	728
(62)	JCN (80)	747
1-C10H7CH[(CH2)3H(CH2)5		/41
1-C10H7CH(CN)(CH2)2N	N(CH ₂) ₂ CH(CN)C ₁₀ H ₇ -1 ()	740
2-C.+H-CH(C+H+)CN (8	51	314
	·	
	(),](CN)(CH ₂) ₂ N 0 ⁽⁷⁴⁾	567
		490 495
C.H.C.C.H)[CH.).OC	C.H.ICN (40)	714 715
CH.CHIC	H-INCN (-)	674
Chich(Cio	(-)	0.54
		100.100
$C_6H_5C(C_4H_9-n)[CH(C_4H_9-n)]$	$(OC_{1}H_{5})_{1}CN$ (45)	689,685

C13

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Condi
C ₁₂ (Contd.)	C ₆ H ₃ CH(C ₄ H ₉ -sec)CN	N(CH ₁) ₂ OCO ₂ C ₂ H,	CH ³ CO ³ K	-
(1-Naphthylacetonitrile	$n-C_{10}H_{21}Br$ $CH_2=CH(CH_2)_8CI$ $2,6-(CH_3)_2C_8H_3O(CH_2)_2CI^{*}$ $(CH_3)_2NCH_2CH(C_8H_3)CI$ $C_6H_3CH_2N(CH_3)(CH_2)_2CI$	NaNH2 NaH NaNH2	Toluene DMF C ₆ H ₆
	C ₆ H ₃ CH(C ₄ H ₉ -n)CN	N-(3-Bromopropyl)phthalimide		C ₆ H ₆ , DMF
	1-Naphthylacetonitrile	6-(Chloromethyl)tetralin $CH_2 = CH(CH_2)_9Cl$ $n - C_{12}H_{23}Br'$ [(CH ₃) ₂ C=CHCH ₂] ₂ N(CH ₂) ₂ Cl		Et20 " C6H6
		1-Chloroacenaphthene	50% aq NaOH, [CsH3CH3N(C2H3)2]Cl	4
		(C ₄ H ₅) ₂ CHCl	50% aq NaOH, [C6H3CH3N(C3H3)3]Cl	-
	1-Naphthylacetonitrile	(Z)-n-C,H,,CH=CH(CH,),CI	NaNH,	EtzO
Cıs	(C ₂ H ₃) ₂ CHCH(C ₆ H ₃)CN CH(C ₆ H ₃)CN	СНЈ	NaH	-
	\diamond	•	NaNH2	Xylene
	CH(C ₆ H ₄ CH ₃ -4)CN	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	•	- 7
	S COC. H. CH2CN-4		NaH	НМРА
		CH ₃ Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-
	CH[(CH ₂) ₂ N(CH ₂) ₃]CN	СН ⁷ і,	NaNH ₂	(- 0)
	CO ₂ C,H ₃	СН31	LDA	THF, - 78°
	n-C4H9C(C3H7-n)2CH2CN	C2H3Br	NaNH2	Et ₂ O
	3-CH3OC6H4CH(C4H9-7)CN 3,4-(CH3)2C6H3CH(C3H7-i)CN	C((CH ₂) ₂ C) H ₂ C-CH ₂	:	C6H6 Et2O
	(1-C10H2)CH(CH3)CN	C ₂ H ₅ Br	" 50% an NaOH (C.H.CH.N/C.H.).1Cl	-
	CO ₃ C ₃ H ₄	C3H31	LDA	THF 78°

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

tions	Product(s) and Yield(s) (%)	Refs.
	C ₆ H ₅ C(C ₄ H ₆ -sec)[(CH ₂) ₂ N(CH ₂) ₅]CN (-)	748
	LCH-CH(CH+)CN (64)	747
	$1-C_{10}H_{1}CH_{1}(CH_{1})_{1}CH=CH_{1}CN_{1}(-)$	743
	$2.6-(CH_1)-C_2H_2O(CH_1)-CH(C_1-H_2-1)CN$ (-)	634
	1-C10H7CH[CH(C6H3)CH2N(CH3)2]CN (83)	740
	$1-C_{10}H_{7}CH[(CH_{2})_{2}N(CH_{3})CH_{2}C_{6}H_{5}]CN$ (80)	740
	$C_{6}H_{5}C(C_{4}H_{6}-n)(CN)(CH_{2})_{5}N$ (56)	643
	$C_{6}H_{5}C(C_{4}H_{6}-n)(CH_{2}C_{10}H_{11})CN$ (35)	343
	$1-C_{10}H_7CH[(CH_2)_9CH=CH_2]CN$ (80)	664
	1-C10H7CH(C12H25-n)CN (79)	728,729
	$I-C_{10}H_7CH[(CH_2)_2N(CH_2CH=C(CH_3)_2)_2]CN$ (-)	749
	CH(C ₁₀ H ₇ -1)CN	
	(7)	81
	cí ci	
	X (50)	79
	CH-C(C+H-)(CH(C+H-)-)CN	
		004
	$(C_2H_3)_2CHC(C_6H_3)(CH_3)CN$ (66)	692
	C6H3C(C3H6)(CH3)CN (-)	631
	END	
	(80)	731
	N C(C ₆ H ₄ CH ₃ -4)(CH ₃)CN	
	S COC,H4[CH(CH_)CN]-4	750
	" ()	750
	\square	
	S C[(CH ₂) ₂ N(CH ₂) ₃](CH ₃)CN (65)	567
	\sim	
	CH(CH ₃)CN	
	N (90)	751
	CO.C.H.	
	PCH C(CH	766
	$n-C.H_{a}C(C,H_{a-n})-C(C,H_{a})=C=NC,H_{a-11}$ (89 ratio of 1.11 = 97.3)	250
	3-CH,OC,H_C(C,H_o-n)[(CH,),CI)CN (56)	720
	3,4-(CH ₃) ₂ C ₆ H ₃ C(C ₃ H ₇ -i)[(CH ₂) ₂ OH]CN (-)	673,674
	$1-C_{10}H_{7}C(CH_{3})(C_{2}H_{3})CN$ (88)	729
		97
	CHICH KN	
	N (55)	751
	CO ₂ C ₂ H ₃	

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.,	C ₆ H ₃ CH[(CH ₂) ₃ N(CH ₃) ₃]CN	í-C ₃ H ₇ Br	NaNH ₂	1	$C_{4}H_{3}C(CN)(C_{3}H_{7}-0)[(CH_{3})_{3}N(CH_{3})_{2}]CN (-)$	629
(Contd.)	(C ₂ H ₃) ₂ CHCH(C ₆ H ₃)CN	CKCH) P-	NaH	<u> </u>	$(C_1H_1)_2CHC(C_0H_2)(C_1H_2)(CN (57))$	721
	3.4(CH ₃ O) ₂ C ₆ H ₃ CH(C ₃ H ₇ -i)CN	i-C ₃ H ₇ Br		DME	$3.4+(CH_3O)_2C_4H_3C(C_3H_7-i)_2CN$ (80)	699
	CH[(CH ₂) ₂ N(CH ₂) ₃]CN	CH2=CHCH2Br	•	÷	$\int_{S} C[(CH_2)_2N(CH_2)_3](CH_2CH=CH_2)CN \qquad (81)$	567
	n-C4H9C(C3H7-n)3CH3CN	n-C₄H ₉ Br	3	Various solvents	$n-C_4H_9C(C_3H_7-n)_2CH(C_4H_9-n)CN$ (78-100), $n-C_4H_9C(C_3H_7-n)_2C(C_4H_9-n)=C=NC_4H_9-n$ (2-22), $n-C_1H_2C(C_1H_7-n)_2C(C_1H_7-n).CN$ (0-20)	256
		i-C.H.Br	10 to 10	Et ₂ O	$n - C_4 H_9 C(C_3 H_7, n)_2 CH(C_4 H_9, i) CN = 1,$	256
		I-C.H.CI		-	$I = \frac{11}{38} \left[\frac{11}{11} = \frac{86\cdot14}{14} \right]$	256
		sec-C4H9Br		•	n-C4H9C(C3H,-n)3CH(C4H9-see)CN 1,	256
	3,4-(CH3O)2C6H3CH(C3H7-i)CN ÇH(C6H3)CN	CH ₃ N(CHO)(CH ₂) ₂ Cl		Toluene	$n-C_{4}H_{9}C(C_{3}H_{7}-n)_{2}C(C_{4}H_{9}-sec) = C=NC_{4}H_{9}-sec II, (30, I:II = 80:20)$ 3,4-(CH_{3}O)_{2}C_{6}H_{3}C(C_{3}H_{7}-i)[(CH_{2})_{2}N(CH_{3})CHO]CN (-)	699
	\diamond	BrCH ₂ CO ₂ C ₂ H,		C ₆ H ₆ , DMF	C ₆ H ₃ C(C ₃ H ₉)(CH ₂ CO ₂ C ₂ H ₃)CN (60)	630,752
	2-(1-Naphthyl)propionitrile	(CH ₃) ₂ N(CH ₂) ₂ Cl		C.H.	1-C ₁₀ H ₇ C(CH ₃)[(CH ₂) ₂ N(CH ₃) ₂]CN (80)	740
	CH2CH(C+H3)CN		-	•	$\int_{O} \mathcal{L}_{CH_2C(C_6H_3)[(CH_2)_2N(CH_3)_2]CN} $ ⁽⁵²⁾	753
	CHICH(C+HAX-4)CN		KNH2	Toluene	CH2C(C+4,X-4)[(CH2)2N(CH2)2]CN	635,753
	ÇH(C₄H₃)CN				I, X = H (-) I, X = C1 (-) $C_{4}(C_{4}H_{3})[(CH_{2})_{2}N(CH_{3})_{2}]CN$	
	\bigcirc	-		•	(54)	753
	OCH.NCH(C.H.)CN		NaNH.		(ACH, NIC(C, H.) ((CH.), N(CH.), ICN (81)	662
	(register)en(egnig)en		LinH.	Toluene	" (81)	663
	n-C4H9C(C3H7-n)2CH2CN	i-C ₅ H ₁₁ Br	NaNH2	Et ₂ O	n-C4H9C(C3H7-n)2CH(C3H11-1)CN I.	256
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(C ₃ H ₇ -i)CN	CH3N(CHO)(CH2)3CF	•	Toluene, or DME, or xylene, or dioxane	$3,4-(CH_3O)_3C_6H_3C(C_3H_7-i)[(CH_2)_3N(CHO)CH_3]CN (58)$	699
	2-(1-Naphthyl)propionitrile	(CH ₃) ₂ NCH ₂ CH(CH ₃)Cl 2-(Chloromethyl)furan	NaNH; NaH	C ₆ H ₆ DMF	I-C₁₀H₂C(CH₃)[CH(CH₃)CH₂N(CH₃)₂]CN (72) (2-C₄H₃O)CH₂C(CH₃)(C1₀H₂-1)CN (86)	740 634
	Ch.CHIC.H.XCN	(CH ₃) ₂ N(CH ₂) ₃ Cl	KNH2	Toluene	(-)	635,753
	n-C4H4C(C3H7-n)2CH2CN	C ₆ H ₁₁ Br	•	Et ₂ O	$n-C_{4}H_{9}C(C_{3}H_{7}-n)_{2}CH(C_{6}H_{11})CN$ I.	256
	C.H.CH(C.Hn)CN	BrCH-CO-C-H	50% ag NaOH, [C.H.CH.N(C.H.),]CI	-	$r_{4}r_{9}C(C_{3}r_{3},r_{3})C(C_{6}r_{11}) - C - NC_{6}r_{11}$ II, (33, 1.11 = 67.13) $C_{4}H_{4}C(C_{4}H_{1,1},n)(CH_{3}CO_{3}C_{4}H_{9},r_{1})CN$ (-)	78
	CH(C.H.)CN	(C ₂ H ₃ O) ₂ CHCH ₂ Br	NaNH ₂	Et 20	C ₆ H ₃ C(C ₅ H ₁₁ -n)[CH ₂ CH(OC ₂ H ₃) ₂]CN (82-85)	637,638
	L			C H	C H C/C H V/CH CH/OC H V YON (75)	630 757
	\bigcirc			Cone	C4N3C(C3N4)[CH2CH(OC2H3)2][CN (73)	030,732
	2-(1-Naphthyl)propionitrile	4-(2-Chloroethyl)morpholine	•	÷.	I-C₁₀H,C(CH₃)(CN)(CH₂)₂N O (−)	740
		R ¹ R ² N(CH ₂) ₂ Cl	KNH2	Toluene	$\int_{CH_{2}C(C_{6}H_{3})[(CH_{2})_{2}NR^{1}R^{2}]CN} I$ I. R ¹ = R ² = C ₂ H ₃ (-) I. R ¹ , R ² = (CH ₂) ₄ (-) I. R ¹ , R ² = (CH ₂) ₄ (-)	635,753

C14

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Cond
C ₁₃ (Contd.)	CH3CH(C4H3)CN	(C ₂ H ₃) ₂ N(CH ₂) ₂ Cl		•
		4-(2-Chloroethyl)morpholine	•	140
	(2-C ₃ H ₄ N)CH(C ₆ H ₃)CN	(C2H3)2N(CH2)2CI	NaNH ₂	-
	<i>n</i> -C ₄ H ₉ C(C ₃ H ₇ - <i>n</i>) ₂ CH ₂ CN C ₆ H ₅ CH(C ₅ H ₁₁ - <i>n</i>)CN	C,H,CH2CI	NaNH2 50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	" "
	C ₆ H ₃ CH(C ₅ H ₁₁ -i)CN 2-(1-Naphthyl)propionitrile CH ₃ CN	" 1-(2-Chloroethyl)piperidine	NaNH2	C ₆ H ₆
	(1)	C ₆ H ₅ CH ₂ Cl	÷.	Toluene
	CH2CH(C6H3)CN	1-(2-Chloroethyl)piperidine	KNH2	
	CH_CH_CH(C_H_)CN		•	(14) (14)
	n-C4H9C(C3H7-n)2CH2CN	n-CaH17Br	NaNH ₂	Et ₂ O
	C ₆ H ₃ CH[(CH ₂) ₃ CH=CH ₂]CN	4-O2NC6H4CH2CI	NaOH	DMF
	C ₆ H ₅ CH(C ₅ H ₁₁ -n)CN	BrCH2CO2C6H11	50% aq NaOH. [C,H3CH2N(C2H3)3]Cl	-
	2-(1-Naphthyl)propionitrile	1,4-Bis(2-chloroethyl)piperazine	NaNH,	C ₆ H ₆
	3-(2-Furyl)-2-phenylpropionitrile	1-(2-Chloroethyl)-2-methylpiperidine	KNH2	Toluene
	2-(1-Naphthyl)propionitrile C ₆ H ₃ CH(C ₃ H ₄ N-2)CN 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(C ₃ H ₇ -i)CN	(CH ₃) ₂ NCH ₂ CH(C ₆ H ₃)Cl (i-C ₃ H ₇) ₂ N(CH ₂) ₂ OCO ₂ C ₂ H ₃ 4-ClC ₆ H ₄ (CH ₂) ₂ N(CH ₃)(CH ₂) ₃ Cl	NaNH2 CH3CO2K NaNH2	C _s H _s
		3,4-(CH3O)2C6H3(CH2)2N(CH3)(CH2)C	1	
C.,	C.H.CH(C.H.)CN	CH,I	-	Xviene
	4-(C ₆ H ₃)C ₆ H ₄ CH ₂ CN		2	Et2O CaHa
	L _S L _{CH[(CH₃)₂N(C₃H₁-n)₂]CN}	СНЪК		-
	(C ₆ H ₅) ₂ CHCN	СНЪСІ	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-
		CH ₂ Br ₂	NaNH2 50% ag NaOH [C.H.CH.N(C.H.).]Cl	÷-
		CH-CI-	"	-
	9-Cyanofluorene	CHJI	NaOCH,	CH.OH
			•	
		CH ₂ Br ₂	I-C4HOK	ı-C₄H₅OH
		СН,І	CH ₃ MgI	Et ₂ O
	C.H.CHI(CH.),N(C.H.),ICN	C.H.Br	70% ag NaOH	

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

tions	Product(s) and Yield(s) (%)	Refs.
	\square	
	$- CH_2C(C_0H_3)[(CH_2)_2N(C_2H_3)_2]CN$ (-)	753
	\frown \neg	
	- CH ₂ C(C ₆ H ₃)(CN)(CH ₂) ₂ N O ()	753
	(2-C,H,N)C(C,H,)[(CH,),N(C,H,)]CN (78)	662
	" (78)	663
	$C_6H_5C(C_5H_{11}-n)(CH_2C_6H_5)CN$ (31)	256
	$C_6H_5C(C_5H_{11}-n)(CH_2C_6H_3)CN$ (31)	68
	$C_6H_5C(C_5H_{11}-i)(CH_2C_6H_5)CN$ (31)	68
	$1-C_{10}H_{7}C(CH_{3})[(CH_{2})_{2}N(CH_{2})_{3}]CN$ (73)	740
	(-)	747
	\square	
	$- CH_2C(C_0H_3)[(CH_2)_2N(CH_2)_3]CN^{(-)}$	753
	$CH_2C(C_0H_3)[(CH_2)_2N(CH_2)_3]CN^{(-)}$	753,03
	n-C4H9C(C3H7-n)2CH(C8H17-n)CN I,	256
	$n-C_4H_9C(C_3H_7-n)_2C(C_8H_1,-n)=C=NC_8H_{1,7}-n$ II (93, 1:11 = 92:8)	
	$C_6H_3C[(CH_2)_3CH=CH_2](CH_2C_6H_4NO_2-4)CN$ (80)	754
	(40) C.H.C(C.Hn)(CH.CO.C.H)CN (26)	754
	I-C ₁₀ H ₇ C(CH ₃)(CN)(CH ₂) ₂ N N(CH ₂) ₂ C(CH ₃)(CN)C ₁₀ H ₇ -I (−) CH,	740
	CH2C(C6H3)(CN)(CH2)2N	753
	(I-C10H2)C(CH3)[CH(C4H3)CH3N(CH3)2]CN (68)	740
	$C_6H_5C(C_5H_4N-2)[(CH_2)_2N(C_3H_7-i)_2]CN(-)$	748
	3,4-(CH ₃ O) ₂ C ₆ H ₃ C(C ₃ H ₃ -i)[(CH ₂) ₃ N(CH ₃)(CH ₂) ₂ C ₆ H ₄ Cl-4]CN (74)	717
	3,4-(CH ₃ O) ₂ C ₆ H ₃ C(C ₃ H ₇ -i)[(CH ₂),N(CH ₃)(CH ₂) ₂ C ₆ H ₃ (OCH ₃) ₂ -3,4]CN 1 ⁻	10210
	1, n = 2 (71)	717
	$\mathbf{r}_{i} \mathbf{h} = \mathbf{J} (\mathbf{h})$	(1)
	4(C, H, Y, H, CH(CH, Y, N) (3)	755
	4-(C ₆ H ₃)C ₆ H ₄ C(CH ₃) ₂ CN (68)	604
	S C[(CH ₂) ₂ N(C ₃ H ₃ -n) ₂](CH ₃)CN (79)	307
	(C ₆ H ₅) ₂ C(CH ₃)CN (-)	67
	$[(C_{6}H_{3})_{2}C(CN)]_{2}CH_{2}$ (-)	756
	$(C_6H_5)_2C(CH_2Br)CN$ (93)	693
	$(C_6H_5)_2C(CH_2CI)CN$ (82)	693
	9-Cyano-9-methylnuorene (56)	138
	" (-)	758
	9-Bromomethyl-9-cyanofluorene (68)	757
	V ^{CN}	
	(86)	52
	s s	
	C4H4C[(CH3)3N(C2H4)2](C2H3)CN (84)	76

C Atoms Nucleophile

4-C.H.C.H.CH.CH.CN

4-C₆H₁₁C₆H₄CH₂CN 4-C₆H₃OC₆H₄CH₂CN (C₆H₃)₂CHCN

CaHaCH(CN)(CH2)2N

9-Cyanofluorene

C₆H₅CH(C₆H₁₁)CN 4-C₆H₅OC₆H₆CH₂CN

4-C.H.C.H.CH.CH.CN

(C.H.)2CHCN

No. of

C14

(Contd.)

ORGANIC REACTIONS

REACT	TIONS O	F NITRIL	E-STABILIZE	D CARBANIONS	
ALKYL SUL	FONATES,	Epoxides,	AND AZIRIDIN	tes (Continued)	

phile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
C.H.CH2CN	C2H3Br	NaNH2	C.H.	4-C6H3C6H4C(C2H3)2CN (80)
	-		Et ₂ O	" (86)
1C ₆ H ₄ CH ₂ CN		50% aq NaOH, [C6H3CH2N(CH3)3]Cl	-	4-C ₆ H ₁₁ C ₆ H ₄ CH(C ₂ H ₃)CN (81)
OC ₆ H ₄ CH ₁ CN	-	NaNH ₂	-	4-C6H3OC6H4CH(C2H3)CN (82)
2CHCN	-	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl		$(C_4H_3)_2C(C_2H_3)CN$ (92)
		C ₁₀ H _a Na	THF	" (77)
	CI(CH ₂) ₂ Cl	NaNH ₂		(C.H.).CI(CH.).CIICN (83)
	Br(CH ₂) ₂ Br	50% aq NaOH, dibenzo[18]-crown-6	-	(C.H.).CF(CH.).BrICN (75)
		50% aq NaOH, [C.H.CH2N(C2H3)3]CI		" (91)
		NaNH,	CH	. ()
			Lene	
	CICH.OCH.CI	SOY an NOH IC. H. CH. NC. H.). ICI		$[(C_6 n_5)_2 C(C N C n_2)_2 (5)$
	CH OCH CI			
	CICH CN			$(C_6H_5)_2C(CH_2OCH_3)CN$ (80)
	CICHICK			$(C_{4}H_{3})_{2}C(CH_{2}CN)CN$ (93)
	H C-CH			Ç,H,
	n ₂ Cn ₂	NaNH.	NH	Colle (a)
	ö		initia	
				O NH
\frown				· ~
HCNYCH O	C.H.Br	-	CH	CHOCHNCHIN O (88)
den den den de la desta de	011101		Celle	
				_
\square	CUR	CUP		
CH(CN)(CH ₂) ₂ N	C2H3BF	C2H3Br	-	$(C(C_2H_3)(CN)(CH_2)_2N) \rightarrow (48)$
\Box				•
ofluorene	C.H.I	NaOCH,	CHOH	9. Cuano. 9. ethylfuorene (cs. 95)
			chjon	" ()
				(=)
And the second second	CICHALCI	NaNH.		
CH[(CH ₁) ₂ N(C ₃ H ₇ -n) ₂]CN	el(ellig)jel	(and)	2	Crich,), N(C,H,-n))r(CH,), CI)CN (32)
	and the second			3
H(C ₆ H ₁₁)CN	Cl(CH ₂) ₃ Br		Celle	$C_6H_5C(C_6H_{11})[(CH_2)_3CI]CN (-)$
OC ₆ H ₄ CH ₂ CN	CH ₂ =CHCH ₂ Br ⁴		Et,O	4-CAH,OCAHACH(CH2CH=CH2)CN (75)
C ₆ H ₄ CH ₂ CN	n-C3H7Br		C.H.	4-C.H.C.H.QC.H 7).CN (78)
	n-C ₃ H ₇ I		FLO	4C.H.C.H.CH(C.H+)CN (72)
	•	-		" (_)
	CH,=CHCH,Br			ACHCHCHCHCHCHCHXX (85)
CHCN	#-C.H.Br	•		
	n-C.H.I	I-C.H.OK		
	CH =CHCH B	NaH	-	
	eng-enenger	SOL AN NOR IC H CH N/C H) ICI	-	$(C_4H_3)_2C(CH_2CH=CH_2)CN$ (12)
	110-0011 OL	50% ad Habri, [C6n3Ch2h(C2n5)3]Ci	-	·· (95)
	HC=CCH1CI	LINH ₂	NH ₃	$(C_{4}H_{3})_{2}C(CH_{2}C\equiv CH)CN$ (88)
	HC≡CCH₂Br	NaNH ₂	El 2O. C.H.	" (60-88)
	CH3CHClCH2Cl		C ₆ H ₆	$(C_6H_5)_2C(CH_2CHClCH_3)CN (-)$
	Br(CH ₂) ₃ Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	(C ₆ H ₅) ₂ C[(CH ₂) ₃ Br]CN I (87), ((C ₆ H ₅) ₂ C(CN)CH ₂) ₂ CH ₂ II (6?)
	•	50% aq NaOH,	-	11 (65)
		$[CH_2=CHCH_2N(C_2H_3)_3]Cl$		11 (52)
		NaNH ₂	C.H.	
		•	Dioxane	I (-)
	CI(CH ₁) ₃ Br	50% ag NaOH	DMSO	(C,H,),C[(CH,),CI]CN (94)
		NaNH,	C.H.	" (79)
	•		Dioxane	- (97)
	CICH.).CN	50% an NaOH. [C.H.CH.N(C.H.).]CI	-	(C.H.)-CHE(CH.)-CNICN (90)
	CH OCHICH YCI	so /s ad tracers Fostularit. (of		(C.H.) CICH(CH.)OCH.JCN (SO)
	CH S(CH) CI	N-NH		
			-	
	CI1CHCO1CH1	NaOCH;	-	$(C_6H_3)_2C(CHC)CO_2CH_3)CN (-)$
	H C-CUCH B.			C,H,
	nje chenjar	t-C.H.OK	LC H OH	Calls (46)
	ö	(canyon	PC4RgOR	
				(C4H3)2C(CN)CH2 ONH
\sim		11		
CHICNNICH J'N	RX	NaNH ₂	-	
chich (chi2)				S - U(R)(CN)(CH2)2N
				L.R = C.Hi (85)
				$LR = CH_CH=CH_{-}(64)$
				the culculation (04)

ALKYL HALIDES,

Refs.

755,604

764,758

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

				the second se		
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ (Conid.)	9-Cyanofluorene	n-C3H31 i-C3H31 or Br CH2≕CHCH2Br ⁴	NaOCH,	сн,он	9-Cyano-9-n-propylfluorene () 9-Cyano-9-isopropylfluorene (ca. 95) 9-Allyl-9-cyanofluorene (69)	758 138 757
	CH[(CH ₂) ₂ N(C ₃ H ₇ -n) ₂]CN	RX	NaNH ₂	-	C[(CH ₂) ₂ N(C ₃ H ₁ -n) ₂](R)CN 1	567
					I. $R = C_4 H_0 \cdot n$ (74) I. $R = (CH_2)_4 CI$ (38)	
	4-C ₆ H ₃ OC ₆ H ₄ CH ₂ CN 4-C ₆ H ₃ C ₆ H ₄ CH ₂ CN	CH ₃ CH=CHCH ₂ Br ⁴	NaNH ₂	Et ₂ O	4-C ₆ H ₃ OC ₆ H ₄ CH(CH ₂ CH=CHCH ₃)CN (85) 4-C ₆ H ₃ C ₆ H ₄ CH(CH ₂ CH=CHCH ₃)CN (75)	761 775
		n-CaHal'			$4-C_6H_5C_6H_4CH(C_4H_9-n)CN (84)$	755
	$C_6H_5CH(CN)(CH_2)_2N(C_2H_5)_2$	n-C ₄ H ₉ Br	70% aq NaOH		$C_6H_5C[(CH_2)_2N(C_2H_3)_2](C_4H_9-n)CN$ (80)	76
	C ₆ H ₅ CH(C ₆ H ₁₁)CN	BrCH ₂ CO ₂ C ₂ H ₅	NaNH ₂	C.H.	C ₆ H ₅ C(C ₆ H ₁₁)(CH ₂ CO ₂ C ₂ H ₅)CN (50-60)	630,752
		I-C4H9Br		Et ₂ O	$C_{6}H_{3}C(C_{6}H_{11})(C_{4}H_{9}-i)CN$ (45)	343
		(CH ₃) ₂ N(CH ₂) ₂ Cl		Toluene	$C_6H_5C(C_6H_{11})[(CH_2)_2N(CH_3)_2]CN$ (60)	663
	(C ₆ H ₅) ₂ CHCN	n-C4H9Br	50% aq NaOH, [C.H.3CH2N(C2H3)3]CI		$(C_6H_5)_2C(C_4H_9-n)CN$ (94)	67
		CI(CH ₂) ₄ CI	NaNH ₂	C ₆ H ₆	$(C_6H_3)_2C(CN)[(CH_2)_4CI]CN I (60), [(C_6H_5)_2C(CN)(CH_2)_2]_2 II (35)$	700-702 776
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	LiNH ₂	Toluene	1 (-)	663
		CI(CH ₂) ₄ Br	LiN(C ₂ H ₃) ₂	Et ₂ O	1 (56)	549
		Br(CH ₂) ₄ Br	50% aq NaOH. [C6H3CH2N(C2H3)3]Cl	-	(C ₈ H ₃) ₂ C[(CH ₂) ₄ Br]CN (79), 11 (13)	693-695
		•	NaNH ₂	-	11 (75)	756.763
		a local distances of the	C ₁₀ H _a Na	THF	II (54)	198
		BrCH ₂ CH(CH ₃)CH ₂ Cl ^e	NaNH ₂		$(C_6H_5)_2C[CH_2CH(CH_3)CH_2CI]CN (-)$	614
		Br(CH ₂) ₂ CH(CH ₃)Br	•	C ₆ H ₆	$(C_6H_5)_2C[(CH_2)_2CHBrCH_3]CN (32),$ $(C_6H_5)_2C(CN)(CH_2)_2CH(CH_3)C(CN)(C_6H_5)_2 (25)$	777
		i-C3H7OCH2CI	50% aq NaOH, [C,H3CH2N(C2H3)3]Cl	19	$(C_6H_5)_2C(CH_2OC_3H_7-i)CN$ (88)	72
		CICH2CO2C2H5	NaH	C ₆ H ₆	$(C_6H_5)_2C(CH_2CO_2C_2H_5)CN (-)$	778
		BrCH ₂ CO ₂ C ₂ H ₅	NaNH ₂		• (-)	779
				NH ₃ , Et ₂ O	$(C_6H_5)_2C(CH_2CO_2H)CN$ (72) ^b	654
		Cl ₂ CHCO ₂ C ₂ H ₃	NaOC ₂ H ₅		$(C_6H_5)_2C(CHClCO_2C_2H_5)CN$ (60)	773
		Cl ₃ CCO ₂ C ₂ H ₅	NaOCH ₃	DME	$(C_6H_5)_2C(CHCl_2)CN$ (-)	780
		CI(CH ₂) ₃ CN	NaNH ₂	C ₆ H ₆	$(C_{6}H_{5})_{2}C[(CH_{2})_{3}CN]CN$ I (50)	781
		Br(CH ₂) ₃ CN	50% aq NaOH, [C, H, CH, N(C, H,)] [C]	2.2	1 (74)	73
			NaNH ₂	C ₆ H ₆	1 (42) CoH3CoH4	782
					L (-), (-)	783-785
					CN	779
		CH ₂ (OC ₂ H ₅) ₂	NaOC ₂ H ₅	C3H3OH	((C ₆ H ₅) ₂ C(CN)) ₂ CH ₂ (14-33)	786
		3-Chloro-1-methylazetidine	NaNH ₂	Toluene	CH ₃ N ⁻ (27)	787
	2-(1-Naphthyl)butyronitrile	(CH ₃) ₂ N(CH ₂) ₂ Cl		C ₆ H ₆	1-C10H2C(C2H3)[(CH2)2N(CH3)2]CN (95)	740
	CH1CH(C+H4OCH1-4)CN		KNH3	Toluene	CH2C(C+4,OCH34)[(CH2)2N(CH3)2]CN (-)	635,753
	(2-C.H.N)CH(CH.C.H.)CN		NaNH,		(2-C-H-NYC(CH-C-H-)[(CH-)-N(CH-)-]CN (67)	575
	9-Cyanofluorene	n-C.H.J	-		9-n-Butyl-9-cvanofluorene (-)	758
		I-C.H.Br	NaOCH,	СН-ОН	9-tert-Butyl-9-cyanofluorene (8)	757
	C.H.CH[(CH2)2N(C2H3)2]CN	i-CsH1Br	70% aq NaOH		C.H.C[(CH.),N(C.H.),](C.H.,-i)CN (66)	76
	4-CoHSCoHCH2CN		NaNH ₂	Et ₂ O	4-C4H3C4H4CH(C4H11-i)CN (85)	775
		n-C3H11Br			4-C+H+C+H+CH(C+H++++)CN (85)	755
	4-CoH,OCoH,CH,CN				4-C,H,OC,H,CH(C,H,1-n)CN (80)	761
		i-C ₅ H ₁₁ Br ^c			4-C6H3OC6H4CH(C3H11-i)CN (84)	761
		2-(Chloromethyl)furan			$4-C_{6}H_{3}OC_{6}H_{4}CH(CN)CH_{1} / O (-)$	635
	(C ₆ H ₅) ₂ CHCN	n-C3H11Br	50% aq NaOH, [CoH3CH2N(C2H3)3]Cl		$(C_0H_5)_2C(C_5H_{11}-n)CN$ (94)	67

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WI

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Pre
C14 (Contd.)	(C ₆ H ₅) ₂ CHCN	Cl(CH ₂) ₅ Cl Br(CH ₂) ₅ Br	NaNH2 50% aq NaOH, [C4H3CH2N(C2H3)3]Cl	C ₆ H ₆	(C (C
		•	NaNH2	C.H.	1
		(CH ₃) ₂ C(NO ₃)(CH ₃) ₂ Br Cl(CH ₃) ₂ CN Br(CH ₃) ₂ CN (CH ₃) ₂ CN	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl NaNH ₂	- - - -	00
		CH ₃ CHBrCO ₃ C ₂ H ₃ CH ₃ CHBrCO ₃ C ₂ H ₃ CH ₃ CHBr(CH ₂) ₂ CN Br(CH ₂) ₂ CO ₂ C ₃ H ₃ (?)	C ₁₀ HeNa NaNH ₂	dibenzo-18-crown-6 THF C ₆ H ₆ DMF	
		(CH ₃) ₂ C-CHCH ₂ Br	≀-C₄H9OK	ı-С₄H₊ОН	ŀC
		н ₂ с-сн, И со ₂ с ₂ н,	C ₁₀ H ₈ Na	THF	ζ,
	2-(1-Naphthyl)butyronitrile $C_6H_5CH(C_6H_{15}-n)CN$ $C_6H_5CH[(CH_2)_2N(C_2H_3)_2]CN$ $C_6H_5CH[(C_6H_1)]CN$ $(C_6H_5)_2CHCN$	$(CH_3)_2NCH_3CH(CH_3)CI$ $(C_2H_3O)_3CHCH_2Br$ $BrCH_2CO_2C_4H_9-r$ $(C_3H_3O)_3CHCH_2Br$ $n-C_6H_{13}Br$ $C_6H_{1,1}I$ $Br(CH_2)_6Br$	NaNH2 50% aq NaOH, [C ₆ H3CH2N(C2H3)3]Cl NaNH3 50% aq NaOH, [C6H3CH2N(C2H3)3]Cl C16H3Na NaNH2	C ₆ H ₆ E1 ₂ O E1 ₂ O THF	1-0 C,1 C,1 C,1 (C, (C,
		CH ₂ CH[O(CH ₃) ₂ Cl] ₃ (C ₂ H ₃ O) ₂ CHCH ₂ Br (C ₂ H ₃) ₂ N(CH ₂) ₂ Cl (C ₂ H ₃) ₂ N(CH ₂) ₂ Cl	C ₁₀ H ₈ Na NaNH ₂ NaOC ₂ H ₃ 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃) ₃]Cl KOH	C ₄ H ₄ THF Et ₂ O Toluene CH ₃ COC ₂ H ₃	[(C (C, (C,
		I-Methyl-3-chloropiperidine	NaNH2	Toluene	ς
		4-(2-Chloroethyl)morpholine	кон	сн,сос,н,	(C.
		BrCH ₂ CO ₂ C ₄ H ₉ -r C ₂ H ₃ CHBrCO ₂ C ₂ H ₃ (CH ₃) ₂ CBrCO ₂ C ₂ H ₃	50% aq NaOH, [C ₆ H ₅ CH ₃ N(C ₂ H ₅) ₃]Cl NaNH ₃	C.H.	(C.) (C.)
		Br(CH ₂) ₃ CN			(C.)
	2-(1-Naphthyl)butyronitrile	4-(2-Chloroethyl)morpholine		C.H.	1-C
	C ₈ H ₃ CH(C ₈ H ₁ , ₃ -#)CN C ₈ H ₃ CH[(CH ₂) ₂ N(C ₂ H ₃) ₂]CN	C ₆ H ₅ CH ₂ Cl " (C ₂ H ₅) ₂ N(CH ₂) ₅ Cl	50% aq NaOH, [C4H3CH3N(C3H3)3]Cl 70% aq NaOH	1	C.H C.H C.H
	C ₆ H ₃ CH(C ₆ H ₁₁)CN	N-(3-Bromopropyl)succinimide	NaNH2	C ₆ H ₆ , DMF	C.H

REACTIONS OF NITRILE-STABILIZED CARBANIONS

137

tions	Product(s) and Yield(s) (%)	Refs.
	(C ₆ H ₃) ₂ C[(CH ₂) ₅ C]CN (48)	702,776
	$(C_6H_5)_2C[(CH_2)_5Br]CN = 1$ (72),	693-695
	((C4H3)2C(CN)CH2)2CH2 II (16)	
	1 (48), 11 (45)	700,701,
		756,763
	$(C_6H_3)_2C[(CH_2)_2C(CH_3)_2NO_2]CN$ (81)	74
	(C ₆ H ₅) ₂ C[(CH ₂) ₄ CN]CN (78)	73
	• ()	784
	" (79)	769,783
	$(C_6H_3)_2C(CN)CH(CH_3)CH_2N(CH_3)_2$ I,	788
own-6	$(C_6H_5)_2C(CN)CH(CH_3)CH_2N(CH_3)_2$ II, (86, 1:11 = 72:28)	
	I (42), II (31)	198
	$(C_6H_5)_2C[CH(CH_3)CO_2C_2H_5]CN$ (87, crude)	789
	$(C_6H_3)_2C[CH(CH_3)(CH_3)_2CN]CN (-)$	777
	$(C_6H_5)_2C[(CH_2)_2CO_2C_2H_5]CN (-)$	779
	C.H.	
	C.H. (_)	774
		//4
	I-C,H, O NH	
	CH. CH.	
	(N/ENH (24), (N/ENH (4)	183
	Î	
	ĊO ₂ C ₂ H ₅ Ĥ	
	I.C., H.C.C.H.)ICH(CH.)CH.N(CH.).)CN (-)	740
	C.H.C(C.H)[CH.CH(OC.H.).]CN (82-85)	637 638
	C.H.CI(CH.) N(C.H.) J(CH.CO.C.H.()CN (80)	78
	C.H.C(C.H.,)[CH.CH(OC.H.).]CN (80)	637 686 725
	(C.H.).C(C.H)CN (92)	67
	$(C_1H_1)_{\mathcal{C}}(C_2H_1)_{\mathcal{C}}(C_1)$	198
	$(C_{1}H_{2})$ - $Cf(CH_{2})$ - Br CN_{1} (51)	702
	$1 (51) [(C,H_{2})-C(CN)(CH_{2})-1, (33)]$	200 201
	[(C.H.).C(CN)CH.CH.O].CHCH. (5)	198
	$(C_{1}H_{1})$, $C(C_{1}+CH(OC_{2}H_{1})$, $C(S_{1})$	686 637 725
	(C_1H_1) - $C[(C_1H_1)$ - $N(C_2H_1)$ - CN (95)	790 791
	" (85)	67
	(C.H.)-CI(CH.)-N(CH.)-ICN (35)	797
	C(C ₆ H ₃) ₂ CN	
		793
	N CH2C(C6H5)2CN	
	\frown	
	$(C_{6}H_{3})_{2}C(CN)(CH_{2})_{2}N = O$ (82)	792
	\Box	
	(C,H,)2C(CH2CO2C,H,-1)CN (97)	78
	(C,H3)2C[CH(C2H3)CO2C2H3]CN (83, crude)	789
	(C ₆ H ₃) ₂ C[C(CH ₃) ₂ CO ₂ H]CN (35)	252
	(C ₆ H ₅) ₂ C[C(CH ₃) ₂ CO ₂ C ₂ H ₅]CN (50-55)	794
	(C.H.)2C[(CH2),CN]CN (83, crude)	795,779,
		783,796
	\frown	
	1-C10H2C(C2H3)(CN)(CH2)2N O (74)	740
	\Box	
	C ₆ H ₅ C(C ₆ H ₁₃ -n)(CH ₂ C ₆ H ₅)CN (32)	68
	C6H3C[(CH2)2N(C2H3)2](CH2C6H4)CN (88)	76
	C ₆ H ₅ C[(CH ₂) ₂ N(C ₂ H ₅) ₂][(CH ₂) ₃ N(C ₂ H ₅) ₂]CN (34)	76
	9	
	K	
	C.H.C(C.H.1)(CN)(CH2)N (-)	643
	Y	
	ő	

C14 (Contd.)

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

139

010						
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C1.4	C ₆ H ₅ CH(C ₆ H ₁₁)CN	(C1H3O)2CH(CH2)2CI		Et2O, C6H6	C ₆ H ₃ C(C ₆ H ₁₁)[(CH ₂) ₂ CH(OC ₂ H ₃) ₂]CN (72)	644,645
(Contd.)		[(CH ₃) ₂ NCH ₂] ₂ CHCl		Toluene	$C_{6}H_{3}C(C_{6}H_{11})[CH(CH_{3}N(CH_{3})_{2})_{2}]CN(-)$	665
	(C,H ₃) ₂ CHCN	C6H3CH2CI	KNH2	NH3, El2O	$(C_6H_3)_2C(CH_2C_6H_3)CN$ (95-99)	538,200
		CH CH B.	50% aq NaOH, $[C_6H_5CH_2N(C_2H_3)_3]Cl$	THE	(98)	198
			20% as NaOH ethylpyridinium iodide or	IAF		615 603
		Canachely	50% aq NaOH, [CoH3CH2N(C2H3)]Cl			015,095
		(C2H3O)2CH(CH2)2CI	NaNH ₂	Et ₂ O, C ₆ H ₆	$(C_{6}H_{5})_{2}C[(CH_{2})_{2}CH(OC_{2}H_{5})_{2}]CN$ (75)	644,645
		(C2H3O)2CHCH(CH3)Br		C ₆ H ₆ or toluene	$(C_6H_5)_2C[CH(CH_3)CH(OC_2H_5)_2]CN$ (75-80)	797,798
		(CH ₃) ₂ NCH ₂ C(CH ₃) ₂ CH ₂ Cl	LiNH ₂	Toluene	$(C_6H_5)_2C[CH_2C(CH_3)_2CH_2N(CH_3)_2]CN$ (73)	663
		L(CH ₃) ₂ NCH ₂ J ₂ CHCl			$(C_6H_3)_2C[CH(CH_2N(CH_3)_2)_2]CN (-)$	665
		1-isopropyl-3-chloropyrrolidine	NaNH ₂		2-(1-Isopropyl-3-pyrrolidyl)-2,2-diphenylacetonitrile (-)	799
		CH. CH. Cl	кон	CH3COC2H3	$(C_6H_5)_2C[(CH_2)_2N(CH_2)_5]CN$ (28)	192
		Chienzei			\frown	
		$\langle \cdot \rangle$	•	•	$(C_6H_5)_2C(CN)(CH_2)_2N$ (12)	792
		\checkmark	77 242		\frown	
		1-(2-Chloroethyl)-4-methylpiperazine	NaNH ₂	C ₆ H ₆	$(C_0H_3)_2C(CN)(CH_2)_2N$ N – (-)	776
		Br(CH.).CO.C.H.		-	ICH CUCH CO HICH (65)	760 770
		i-C.H.CHBrCO.C.H.			$(C_{H})_{2}C[CH_{1}(C_{H})CO_{1}CH_{1}(C_{H})]$	800
		n-C,H-CHBrCO,C,H.	•		(C,H_),C[CH(C,Ha)CO,C,H_]CN (90,95 crude)	789
		Br(CH ₂) ₆ CN			$(C, H_{2}) \subseteq [C(H_{2}), CN] CN (-)$	795
		N-(3-Bromopropyl)succinimide	1	C.H. DMF	(C.H.)-C(CN)(CH.)-N (76)	643
					Y	
					C(C,H_),CN	
		1-Isopropyl-3-azetinol methanesulfonate	NaH	Toluene	(56)	787
	ACIC.H.CH/C.H.YCN	1-(2-Chloroethyllpineridine	NaNH			
	+ cicententenisjen	"	LINH		$4-C C_6H_4C C_6H_5 [(CH_2)_2N(CH_2)_5]CN$ (32)	662
	2-(1-Naphthyl)butyronitrile		NaNH	loluene		003
	- (C H	(42)	740
				CAR6	(87)	740
	3-(2-Furyl)-2-phenylbutyronitrile	-	KNH2	Toluene	(-)	753
	SCH(CN)(CH ₂) ₂ N	C4H3CH2Ck	NaNH ₂	-	$\langle S - C(CH_2C_0H_3)(CN)(CH_2)_2N \rangle $ (90)	567
	9-Cyanofluorene	CAHACH2CI or CAHACH2Br	NaOCH, or t-CaHoOK	CH,OH or	9-Benzyl-9-cvanofluorene (ca. 95)	138.801.802
				1-C1H"OH		
		C6H3CH2CI	КН	DMSO	" (+)	137
		70 H CH X				
		20,61,012				
					ZC,H,CH, CN	
			r-C4H9OK	r-C4HOH or	II, Z = 4-Br, X = Br (-)	801
			NaOCH,	СН,ОН	II, $Z = 3$ -Br, $X = Br$ ()	138
					II, $Z = 3-Cl, X = Br (-)$	138
	Surger and the state	1.212 201			$II, Z = 3-NO_2, X = Br \text{ or } CI (-)$	138
	4-C6H3C6H4CH2CN	n-C _a H ₁₇ Br	NaNH ₂	Et ₂ O	$4 - C_6 H_3 C_6 H_4 CH(C_8 H_{17} - n) CN$ (82)	755
		(i-C ₃ H ₇) ₂ N(CH ₂) ₂ Cl		Toluene	4-C ₆ H ₅ C ₆ H ₄ CH[(CH ₂) ₂ N(C ₃ H ₃ - <i>i</i>) ₂]CN (-)	803
	(C ₆ H ₃) ₂ CHCN	C ₆ H ₅ (CH ₂) ₂ Cl	KNH ₂	NH3, El2O	$(C_6H_5)_2C[(CH_2)_2C_6H_5]CN$ (89)	260
		C ₆ H ₃ (CH ₂) ₂ Br	CioHaNa	THF	(65)	198
			NaNH ₂	NH ₃ . Et ₂ O	(64)	162
			NaH	DME	(60)	162
			(MAT)	DME	(00)	

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

141

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C14	C ₆ H ₅ (CH ₂)Br	C,H,CH(CH3)CI	50% aq NaOH, [C,H,CH,N(C,H,),]Cl	-	(C,H,),C[CH(CH,)C,H,]CN (%)	67
(Conid.)		C II OVOLLA D	KNH,	NH ₃ , Et ₂ O	- (88)	260
			LIN(C ₂ H ₅) ₂	CeHe	$(C_6H_5)_2C[(CH_2)_2OC_6H_5]CN$ (87)	562
			KOAc		$(C_4H_3)_2(CH(C_1H_3)CH(UC_2H_3)_2)CN$ (75-80)	797
		Lisobuty-Jchloropyroliding	NeNH	Toluene	$(C_6\Pi_5)_2 C[(C\Pi_2)_3 N(C\Pi_3)_2] CN (-)$	748
		NCU > C	rentra 1	Tomene	2-(1-isooury	199
		A			N(CH ₂) ₂ C(C ₆ H ₅) ₂ CN	
		D	КОН	CH3COC3H3	(66)	792
		n-CAH.CHBrCO.C.H.		-	(CaHa),CICH(CaHan)CO,CaHaICN (90. crude)	789
		N-(4-Bromobutyl)succinimide	NaNH,		(C4H3)2C[(CH3)4NH3]CO3H (-)	659,660
					Q	
					X	
		N-(4-Bromobutyl)succinimide		C.H., DMF	$(C_4H_3)_2C(CN)(CH_2)_4N$ (60)	661
					8	
	8.C	70 H CH X	North	CH OH	()	
	9-Cyanouborene	2C4H4CH2X	NaOCH ₃	СНЗОН	$\sim \sim \sim$	138
					ZC,H,CH, CN	
					1.7 = 3-0CH, $X = CI (-)$	
					$L Z = 3-CH_{2}, X = Br (-)$	
					$1, Z = 4-CH_1, X = Br \text{ or } Cl (-)$	
	C6H3CH(C6H11)CN	C6H3CO2(CH2)2Br	•		C4H4C(C4H1) [(CH3)+OCOC4H4]CN (35)	714,715
	(C ₆ H ₃) ₂ CHCN				(C ₆ H ₃) ₂ C[(CH ₂) ₂ OCOC ₆ H ₃]CN (35)	714,715
		(C2H3O)2CHCH(C3H7-n)Br	•	CoHo	(C6H3)2C[CH(C3H7-#)CH(OC2H3)2]CN (75-80)	797
		Br(CH ₂) ₆ CO ₂ C ₂ H ₃			(C6H3)2C[(CH2)6CO2H]CN (80)	795
					$(C_{6}H_{3})_{2}C[(CH_{2})_{6}CO_{2}C_{2}H_{3}]CN (-)$	779
		[(CH ₃) ₂ N(CH ₂) ₂ O] ₂ CO	CH3CO3K	27.0	$(C_6H_3)_2C[(CH_2)_2N(CH_3)_2]CN (-)$	748
		(C ₂ H ₃) ₂ NCH ₂ C(CH ₃) ₂ CH ₂ Cl	LINH ₂	Toluene	$(C_6H_3)_2C[CH_2C(CH_3)_2CH_2N(C_2H_3)_2]CN$ (66)	663
		W-(3- Bromopenty) Auccinimide	Narin;	-	(C_6H_5)2C[(CH_2)5NH2]CO2H (-)	639,060
					L	
		0.00	C. (1971)	C.H., DMF	(C ₄ H ₄) ₁ C(CN)(CH ₁) ₁ N (80)	661
				ALC: N. C.	γ	
		^			0	
		\sim	KOH	SUL 202 U		
			KOA	CH3COC2H3	(64)	192
		Î			N ^a	
		(CH ₂) ₂ Cl			(CH ₂) ₂ C(C ₆ H ₃) ₂ CN	
		٨				
		1	1. A		(40)	702
		N(CH,),CI			(40)	192
	9.Cvanoranthese	FICH) NICH) OI CO				
	(C.H.)-CHCN	Brich, CO.C.H.	MaNU	C.11	9-(2-(Dimethylamino)ethyl)-9-cyanoxanthene hydrochloride ()	748
	(construction)	a confidential	, and the second s	Celle	$(C_4 H_3)_2 C[(CH_3)_2 CO_2 H] CN (12)$	795
		Br(CH.),CH(CO.C.H.),		C.H.	(C,H,),CI(CH,),CO,H)CN (-Y	769 770
		Br(CH1),C(CH1)(CO,C1H1),	•	DMF	(C.H.).C((CH.).C(CH.)(CO.C.H.).CN (61 cmde)	777 804
		Br(CH ₂) ₁₀ Br	- / • .	C.H.	[(C_H_),C(CN)(CH_),], 1 (63)	805
		•	•		(C ₄ H ₄) ₂ Cf(CH ₂) ₄ Br)CN (65) 1 (10)	700
		(C2H3O)2CHCH(C4H3-A)Br			(C.H.),C[CH(C.H.,n)CH(OC.H.),CN (75-80)	797
		(CH ₂) ₅ NCH ₂ C(CH ₃) ₂ CH ₃ CI	LiNH ₂	Toluene	(C ₆ H ₃) ₂ C[CH ₂ C(CH ₃) ₂ N(CH ₃) ₃]CN (61)	663
		Br(CH ₂) ₉ CN	NaNH ₂	C.H.	(C ₆ H ₅) ₂ C[(CH ₂) ₉ CN]CN (60)	805,806
		and the second second second second			C(C ₄ H ₃) ₂ CN	
		I-Cyclohexyl-3-azetinol methanesulfonate	NaH	Toluene	(18)	787
					C.H.N-	

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

				-	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	4
C14 (Contd.)	(C ₆ H ₃)CHCN	N-(6-Bromohexyl)succinimide	NaNH;	4	(
		•		C ₆ H ₆ , DMF	(
	2-(1-Napthyl)butyronitrile $C_6H_3CH(C_6H_{13}-n)CN$	(CH3)2NCH2CH(C8H3)Cl [(C2H3)2NCH2]2CHCl	12	C ₆ H ₆ Toluene	ļ
	C ₆ H ₅ CH(C ₆ H ₁₁)CN	N-(3-Bromopropyl)phthalimide		C ₆ H ₆ , DMF	c
		[(C ₂ H ₃) ₂ NCH ₂]CHCl	dia h	Toluene	c
		1,3-Bis-(4-morpholinyl)-2-chloropropane			c
	(C ₆ H ₅) ₂ CHCN	Br(CH ₂) ₁₀ CN		C.H.	(
		Br(CH ₂) ₈ CO ₂ C ₂ H ₅		•	(
		Br(CH ₂) ₂ C(C ₂ H ₃)(CO ₂ C ₂ H ₃) ₂ [(C ₂ H ₃) ₂ NCH ₂] ₂ CHCl		DMF Toluene	(
		N-(3-Bromopropyl)phthalimide		C ₆ H ₆ , DMF	(
	4-CIC+H+CH(C+H+)CN	[(C,H,),NCH,J,CHCI		Toluene	
	(C ₆ H ₅) ₂ CHCN	Br(CH ₂) ₁₂ Br		C ₆ H ₆	(
		1-(1-Phenylethyl)-3-azetinol methanesulfonate	NaH	Toluene	c
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(C ₄ H ₉ -i)CN	3.4-(CH ₃ O) ₂ C ₆ H ₃ (CH ₂) ₂ N(CH ₃)(CH ₃) ₂ Cl	NaNH,	2	3
	(C ₆ H ₅) ₂ CHCN	(C ₆ H ₅) ₂ CHCl	KNH2 50% aq NaOH. [C6H3CH2N(C2H3)3]Cl	NH3. Et2O	(
		HO C ₄ H ₃ N(CH ₂) ₂ Cl	кон	СН3СОС3Н	(
	9-Cyanofluorene	(C ₆ H ₅) ₂ CHCl	r-C₄H₀OK	r-C ₄ H ₉ OH	
					"
		100000			
		9-Chlorofluorene			
					ĺ,
	3,4-(CH3O)2C6H3CH(C6H9-i)CN	3,4-(CH3O)2C6H3(CH2)2N(CH3)(CH2)3CI	NaNH2	Tolucne	3
	(C ₆ H ₅) ₂ CHCN	Br(CH ₂) ₁₁ CO ₂ CH ₃		C.H.	(
		3,4-{CH3O}2C6H3(CH2)2N(CH3)(CH2)3CI N-{10-Bromodecyl}succinimide		Toluene	(0
			- G	C ₄ H ₄ , DMF	(0

Product(s) and Yield(s) (%) C6H3)2C[(CH2)6NH2]CO2H (-)* C.H.)2C(CN)(CH2)6N (80)

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

I-C10H2C(C2H3)[CH(C6H3)CH2N(CH3)2]CN (72) 740 C.H.SC(C.H.J-n) (CH(CH2N(C2H3)2)2)CN (-) 665 -H,C(C,H,)(CN)(CH2), (54) 643 C6H3C(C6H11) (CH[CH2N(C2H3)2]2)CN (-) 611,665 665 CoHSC(CoH11)(CN)CHCH2 (-) (C.H.s)2C[(CH2)10CN]CN (59) 807,805 (C.H.s)2C[(CH2)8CO2C2H3]CN (57) 805,806 (C₆H₅)₂C[(CH₂)₂C(C₂H₅)(CO₂C₂H₅)₂]CN (-) 804 (C,H,)2C[CH(CH2N(C2H2)2)2]CN (-) 665 C.H.)2C(CN)(CH2)3N 643,716 (75) 4-CIC,H,C(C,H,) (CH[CH2N(C2H,)2]2)CN (-) 665 C6H3)2C[(CH2)12Br]CN (32), [(C6H3)2C(CN)(CH2)6]2 (19) 700 C(C.H.),CN 787 (42) H,CH(CH,)N-4-(CH₃O)₂C₆H₃C(C₄H₉-i)[(CH₂)₂N(CH₃)(CH₂)₂C₆H₃(OCH₃)₂-3,4]CN (66) 717 C6H5C(C6H11){CH[CH2N(CH2)5]2}CN (--) 665 C6H3)2C[CH(C6H3)2]CN (96) 260 67 (96) OH C.H.)2C(CN)(CH2)2 (52) 792 C.H.

C.H.),CH CN

Ő

.4-(CH3O)2C6H3C(C4H9-i)[(CH2)3N(CH2)(CH2)2C6H3(OCH3)2-3,4]CN (70) 717 C.H.)2C[(CH2)11CO2CH2]CN (83) 805,807 C,H3)2C[(CH2)3N(CH3)(CH2)2C,H3(OCH3)2-3,4]CN (72) 717 C.H.s)2C[(CH2)10NH2]CO2H (-)* 659,660 C.H.)2C(CN)(CH2)10 661 (85)

Refs.

659,660

661

801

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ (Contd.)	(C ₆ H ₅) ₂ CHCN	[FeCH ₂ N(CH ₂) ₂]I N-(12-Bromododecyl)succinimide	Na NaNH3	Toluene, DMF	(C ₆ H ₃) ₂ C(CH ₂ Fe)CN (76) (C ₆ H ₃) ₂ C[(CH ₂) ₁₂ NH ₂]CO ₂ H (-)*	667 659,660
		•	•	C ₆ H ₆ , DMF	(C ₆ H ₅) ₂ C(CN)(CH ₂) ₁₂ N (65)	661
		Br(CH ₂) ₃ C(C ₆ H ₅)(CO ₂ C ₂ H ₃) ₂ (C ₆ H ₅) ₂ CCICN	" 50% aq NaOH, [C4H3CH2N(C2H3)3]Cl	C ₄ H ₄	Ó (C₄H₃)₃CH[(CHュ)₃CH(C₄H₃)CO₂H]CN (−) [(C₄H₃)₅C(CN]]₄ (91)	769,770 79
Cıs	(#-C4H9)3Sn(CH2)2CN C6H3CH2CH(C6H3)CN	СНЪІ	LDA NaH NaNH- or CH-Mel	THF, -40°	$(n-C_4H_9)_3$ SnCH ₂ CH(CH ₃)CN (65), $(n-C_4H_9)_3$ SnCH ₂ C(CH ₃) ₂ CN (21) C ₆ H ₂ C(C ₆ H ₂)(CH ₃)CN (71)	164 692
	2-CIC ₆ H ₄ CH ₂ CH(C ₆ H ₃)CN 3,4-CI ₂ C ₆ H ₃ CH ₂ CH(C ₆ H ₃)CN 4-(C ₈ H ₄ CH ₃)C ₆ H ₄ CH ₃ CN	÷	NaNH,		(-) 2-CIC ₆ H ₂ CH ₂ C(C ₆ H ₃)(CH ₃)CN (-) 3,4-CI ₂ C ₆ H ₃ CH ₂ C(C ₆ H ₃)(CH ₃)CN (-) 4-(C,H,CH ₂ C)C,H,CH(CH ₃)CN (84)	51 51 775
	3-(C4H3CO)C4H4CH2CN	СНЪІ	(n-C4H9)4NOH	CH2Cl2	$3 \cdot C_6 H_3 COC_6 H_4 CH(CH_3)CN$ I, $3 \cdot C_6 H_3 COC_6 H_4 C(CH_3)_2 CN$ II I:II = 8:2 (-)	808
	C4H, N CH,CN	•	NaNH2	C.H.	C ₆ H ₃ NCH(CH ₃)CN (37)	291
		СН'і,		-	(78)	567
	4-C ₆ H ₃ CH ₂ C ₆ H ₄ CH ₂ CN	C ₂ H ₃ Br	-	Et ₂ O	4-C ₆ H ₃ CH ₂ C ₆ H ₄ CH(C ₂ H ₃)CN (91)	775
	2,5-CH3O(C6H3)C6H3CH2CN			ेर	C.H. (80)	775
	3-(C6H3CH2O)C6H4CH2CN	1.2			$3-C_6H_5CH_2OC_6H_4C(C_2H_5)_2CN$ (-)	675
	C ₆ H ₃ CH(CN)(CH ₂) ₂ N(CH ₂) ₅ C ₆ H ₃ CH ₂ CH(C ₆ H ₅)CN	CI(CH ₂) ₃ Br	2	C ₆ H ₆	C ₆ H ₂ C[(CH ₂) ₂ N(CH ₂) ₂](C ₁ H ₂)CN (85) C ₆ H ₂ CH ₂ (C ₆ H ₂)[(CH ₂) ₂ C]CN (64) (C ₁ -C ₁ -CH ₂ -C(C-H ₂ -CN)CH ₂ -CH ₂ (18)	681 700-702,72
		HC≡CCH ₂ Br		Et2O, C.H.	C ₆ H ₃ CH ₂ C(C ₆ H ₃)(CH ₂ C≡CH)CN (60-88)	613
	4-(C ₆ H ₃ CH ₂)C ₆ H ₄ CH ₂ CN C ₆ H ₅ CH(CN)(CH ₂) ₂ N(CH ₂) ₅	CH ₂ =CHCH ₂ Br i-C ₃ H ₇ Br		Et ₂ O C ₆ H ₆	4-C ₆ H ₃ CH ₂ C ₆ H ₄ CH(CH ₂ CH=CH ₂)CN (75) C ₆ H ₃ C[(CH ₂) ₂ N(CH ₂) ₃](C ₃ H ₇ - <i>i</i>)CN (86)	775 681
		RX'		4	$\langle \mathcal{L}_{S} \mathcal{L}_{C(R)(CN)(CH_2)_2N} \rangle$	567
	(#-C4H4)3Sn(CH3)3CN	CH3=C(CH3)CH3CI	LDA	THF40°	I, $R = C_3H_7 + i$ (65) I, $R = CH_2CH=CH_1$ (76) ($n-C_4H_3$), SnCH_3CH[CH_2C(CH_3)=CH_3]CN (72),	164
	C4H3CH2CH(C4H3)CN	CI(CH ₂) ₄ CI	NaNH ₂	C.H.	$(n-C_4H_4)_3SnCH_2C[CH_2C(CH_3)=CH_3]_3CN$ (4) $C_4H_3CH_3C(C_4H_4)[(CH_3)_4CI]CN$ (40),	700-702
	3-Methyl-2-(1-naphthyl)butyronitrile	(CH ₃) ₂ N(CH ₂) ₂ Cl		NH3, E120 CaH4	$[C_6H_3CH_2C(C_6H_3)(CN)CH_2CH_2]_2$ (43) I-C ₁₀ H ₇ C(C ₃ H ₇ -7)[(CH ₂) ₂ N(CH ₃) ₂]CN (-) - (-)	621 740
	3-(2-Furyl)-2-phenylvaleronitrile	•	KNH3	Toluene	$\sqrt{2}$ CH(C ₃ H ₃)C(C ₄ H ₃)[(CH ₂) ₂ N(CH ₃) ₂]CN (-)	753
	C ₆ H ₃ CH[(CH ₂) ₂ N(CH ₂) ₅]CN C ₆ H ₃ CH ₁ CH(C ₆ H ₃)CN	sec-C4H9Br ^r Cl(CH2)5Cl	NaNH2	C.H.	$C_{6}H_{5}C[(CH_{2})_{2}N(CH_{2})_{5}](C_{4}H_{6}-sec)CN$ (82) $C_{6}H_{5}CH_{5}C[(C_{6}H_{3})](C(CH_{2})_{5}C][CN$ (45), $C_{6}H_{5}CH_$	681 700-702
		Br(CH ₂) ₂ CO ₂ C ₂ H ₃	10.0		$[C_6H_5CH_2C(C_6H_5)(CN)(CH_2)_2]_2CH_2$ (37) $C_6H_4CH_5C(C_6H_4)[(CH_5)_5CO_5H]CN (75)^4$	682
	3-Methyl-2-(1-naphthyl)butyronitrile	(CH ₃) ₂ NCH ₂ CH(CH ₃)Cl C ₂ H ₅ N(CH ₃)(CH ₂) ₂ Cl		:	$1-C_{10}H_{2}C(C_{3}H_{2}-f)[CH(CH_{3})CH_{2}N(CH_{3})_{2}]CN (86)$	740 740
	C ₆ H ₅ CH(C ₇ H ₁₅ -#)CN C ₆ H ₅ CH ₂ CH(C ₆ H ₅)CN	(C ₂ H ₅ O) ₂ CHCH ₂ Br C ₆ H ₁₁ I	C10HaNa	El ₂ O THF	C ₆ H ₂ C(C ₇ H ₁ ₅ +n)[CH ₂ CH(OC ₂ H ₃) ₂]CN (#2-85) C ₆ H ₃ CH ₂ C(C ₆ H ₃)(C ₆ H ₁)CN (-)	637,638 198

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

of	Nucleophile	Electrophile	Base
4	C ₆ H ₃ CH ₂ CH(C ₆ H ₃)CN	Br(CH ₂) ₆ Br	NaNH2
i(a.)		BrCH2CO2C4H9-1 (C2H3O)2CHCH2Br	50% aq NaOH, [C4H3CH2N(C2H3)3]Cl NaNH2
	3-Methyl-2-(1-naphthyl)butyronitrile	4-(2-Chloroethyl)morpholine	
		(C2H3)2N(CH2)2CI	1 (• 1
	CH(C ₆ H ₅)CN		
	N	C ₆ H ₁₁ Br	KNH2
	Ċ₂H, ∕──		
	CH3CH(C6H3)CN	den.	rah.
	Ċ,H,		
	(n-C4H9)3Sn(CH2)2CN	C ₆ H ₃ CH ₂ Br	LDA
	C,H,CH,CH(C,H,)CN	(C2H3O)2CH(CH2)2CI	NaNH ₂
		1-(2-Chloroethyl)piperidine	LiNH ₂
		1-(3-Bromopropyl)succinimide	NaNH ₂
	3-Methyl-2-(1-naphthyl)butyronitrile	1-(2-Chloroethyl)piperidine	
	3-(2-Furyl)-2-phenylvaleronitrile		KNH2
	$ \land \land \land$		
	CH(CN)(CH ₂) ₂ N	C ₆ H ₃ CH ₂ Cf	NaNH;
	(n-C ₄ H ₀) ₃ Sn(CH ₂) ₂ CN	C ₆ H ₃ O(CH ₂) ₂ Br	LDA
	C ₆ H ₅ CH ₂ CH(C ₆ H ₅)CN	N-(4-Bromobutyl)succinimide	NaNH ₂
			÷.
	(n-C4H9)3Sn(CH2)2CN	(E)-C ₆ H ₃ CH=CHCH ₃ Br	LDA
	C.H.CH.CH(C.H.)CN	C.H.CO.(CH.).Br	NaNH-
	3-Methyl-2-(1-naphthyl)butyronitrile	(CH3)2NCH2CH(C6H3)CI	
	(#-C+H+)3Sn(CH2)2CN	C ₆ H ₃ CH ₂ N(CH ₃)(CH ₂) ₂ Cl I-(Chloromethyl)naphthalene	LDA
	4XC.H.CH/C.H. YCN	(C.H.).NCH.).CHCI	
		Webrild Scheren	NaNH2
	C.H.CH2CH(C.H.)CN	N-(3-Bromopropyl)phthalimide	•

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.H.	C ₆ H ₅ CH ₂ C(C ₆ H ₅)[(CH ₁) ₆ Br]CN (45),	700-702
	$[C_6H_5CH_2C(C_6H_5)(CN)(CH_2)_5]_2$ (27)	79
Et ₂ O	$C_{4}H_{3}CH_{2}C(C_{6}H_{3})[CH_{2}CH(OC_{2}H_{3})_{2}]CN$ (80)	686,637,725
C.H.	I-C ₁₀ H ₇ C(C ₃ H ₇ -i)(CN)(CH ₃) ₂ N (67)	740
	I-C10H7C(C3H7-i)[(CH2)7N(C2H3)2]CN (91)	740
	C(C ₆ H ₃)(C ₆ H ₁₁)CN	
Toluene	(−) с,н,	250,251
	$\begin{pmatrix} \\ N \end{pmatrix}$ CH ₃ C(C ₆ H ₃)(C ₆ H ₁)CN (-)	250,251
THF, -40°	C_2H_5 (n-C_4H_9)_SnCH_2CH(CH_2C_6H_5)CN (63),	164
ROCH	$(n - C_4 H_9)_3 Sn CH_2 C(CH_2 C_6 H_3)_2 CN (17)$	644 645
Toluene	$C_{6}H_{3}CH_{2}C(C_{6}H_{3})[(CH_{3})_{2}N(CH_{3})_{3}]CN (33)$	663
C ₆ H ₆ , DMF	C ₆ H ₃ CH ₂ C(C ₆ H ₃)(CN)(CH ₂) ₂ N (-)	643
C ₆ H ₆	1-C ₁₀ H ₇ C(C ₃ H ₇ -i)[(CH ₂) ₂ N(CH ₂) ₅]CN (86)	740
Toluene	\int_{O} CH(C ₂ H ₃)C(C ₄ H ₃)[(CH ₂) ₂ N(CH ₂) ₃]CN (-)	753
	C(CH ₂ C ₄ H ₃)(CN)(CH ₂) ₂ N (76)	567
THF40°	(n-C4H9),SnCH2CH(CH2CH2OC6H3)CN (70),	164
G	(n-C₄H ₉) ₃ SnCH ₂ C(CH ₂ CH ₂ OC ₆ H ₅) ₂ CN (16) C ₆ H ₃ CH ₂ C(C ₆ H ₃)[(CH ₂) ₄ NH ₂]CO ₂ H (−) ⁶	659,660
	٩	
C ₆ H ₆ , DMF	$C_{6}H_{3}CH_{2}C(C_{6}H_{3})(CN)(CH_{2})_{6}N$ (72)	661
THF. −40*	$(n-C_4H_{\bullet})_{2}SnCH_{2}CH(CH_{2}CH=CHC_{4}H_{3})CN$ (68), $(n-C_{4}H_{*})_{2}SnCH_{2}C(CH_{2}CH=CHC_{4}H_{*})_{2}CN$ (6)	164
C.H. DMF	C ₆ H ₃ CH ₂ C(C ₆ H ₃)[(CH ₂) ₂ OCOC ₆ H ₃]CN (47)	714,715
C.H.	1-C10H7C(C3H7-i)[CH(C6H3)CH2N(CH3)2]CN (71)	740
THF, -40°	$\frac{1}{(n-C_4H_4)_3SnCH_2CH(CH_2)_2N(CH_3)CH_2C_6H_3]CN}{(n-C_4H_4)_3SnCH_2CH(CH_2C_{10}H_{7}-1)CN}$ (69), (n-C_4H_4)_3SnCH_2CH(CH_2C_{10}H_{7}-1)2CN} (13)	740 164
Tohuene	$+ A c_6 n_4 c_1 (c_6 n_1) [c_1 (c_1 n_2 n_1 (c_2 n_3)_2)]c_N = I$	665
-	$i, x = och_{3} (-)$ $i, x = och_{3} (-)$	665
C.H. DMF	C+H,CH2C(C+H2)(CN)(CH2)	643,716
	J~	

146

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

149

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

No. of C Atoms	Nueleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅ (Conid.)	CH(CH ₂ CH=CH ₂)CN	CH2=CH(CH2),Cl	NaNH3	Ether	I-C10H,C(CH2CH=CH2)[(CH2),CH=CH2]CN (67)	664
	CH,0	C ₂ H ₂ O	21 ()	NH,		809
C,.	C ₆ H ₃ C ₆ H ₃ CN	СНЪІ	LDA	Et ₂ O	$C_{4}H_{3} CN (58)$ $C_{4}H_{3} CN (58)$	38
	NCCH2 CH2CN	3.50	·			
			NaH	THF	I, $R = CH_3$, $R^1 = R^2 = H$ (-) I, $R = R^2 = CH_3$, $R^1 = H$ (-)	810 810
	4-[C ₆ H ₃ (CH ₂) ₂]C ₆ H ₄ CH ₂ CN	CH3K C3H3Br	NaNH ₂	Et ₂ O	I, $R = R^{2} = R^{2} = CH_{3} (-)$ 4-[C ₆ H ₅ (CH ₃) ₂]C ₆ H ₆ CH(CH ₃)CN (90) 4-[C ₆ H ₅ (CH ₃) ₂]C ₆ H ₆ CH(C ₃ H ₅)CN (84)	810 775 759
		(CH ₃) ₂ SO ₄		C ₆ H ₆ , toluene		811
	(S) CH[(CH ₂) ₂ N(C ₄ H ₉ -#) ₂]CN	RX'		-	$\int_{S} \int_{C[(CH_2)_2 N(C_4H_9,n)_2](R)CN} R = CH_2 CH = CH_3 (84)$	567
	CH[(CH ₂) ₂ N(CH ₃)CH ₂ C ₆ H ₃]CN	-		-	$R = CH_{3}C \equiv CH (65)$ $\int_{S} C[(CH_{3})_{2}N(CH_{3})CH_{2}C_{6}H_{3}](R)CN$	568
	C ₆ H ₃ (CH ₂) ₂ CH(C ₆ H ₃)CN (2-C ₁₀ H ₇)CH[(CH ₃) ₃ N(CH ₃) ₂]CN 4-(C ₆ H ₅ (CH ₂) ₂)C ₆ H ₄ CH ₂ CN CN	Cl(CH ₂) ₃ Br i-C ₃ H ₇ Br CH ₂ =CHCH ₃ Br ²		C ₆ H ₆ El ₃ O	$R = CH_{2}CH=CH_{2} (71)$ $R = C_{3}H_{7}(79)$ $C_{6}H_{5}(CH_{2})_{2}C(C_{6}H_{3})[(CH_{2})_{5}CI]CN (-)$ $2 \cdot C_{10}H_{7}C[(CH_{2})_{2}N(CH_{3})_{2}](C_{3}H_{7}()CN (-))$ $4 \cdot [C_{6}H_{3}(CH_{2})_{2}]C_{6}H_{6}CH(CH_{2}CH=CH_{2})CN (89)$ $C(CH_{7}) = CN = -\infty$	721 621 775
	a b	Cl(CH ₂) ₃ Br				
	C CN CX			5	I, X = H (-) I, X = CI (-) Cl(CH2)2 CN X I	812 812
		1		÷.	I,X = H (-) I,X = F (-)	812 812
	(S) CH[(CH ₂) ₂ N(C ₄ H ₄ -n) ₂]CN	CK(CH2)4Cf		-	$ \int_{S} \int_{C[(CH_2)_2 N(C_4H_{4}-n)_2][(CH_2)_4 CI]CN}^{(51)} $	567

C.,

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

151

-						
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
Cie	4-[C+H3(CH2)2]C+H+CH2CN	n-C4H9Br	NaNH2	Et ₂ O	4-[C ₆ H ₅ (CH ₂) ₂]C ₆ H ₄ CH(C ₄ H ₉ -n)CN (78)	775
(Contd.)	(4-CH ₃ C ₆ H ₄) ₂ CHCN (4-CH ₃ OC ₆ H ₄) ₂ CHCN	BrCH ₂ CO ₂ C ₂ H ₅ "	:	Et2O, DMF C6H6	$(4-CH_3C_6H_4)_2C(CH_2CO_2C_2H_3)CN (-)$ $(4-CH_3OC_6H_4)_2C(CH_2CO_2C_2H_3)CN (-)$ $CH[(CH_3)_3N(CH_3)_2]CN$	813 814
	4-Isobutyl-1-naphthylacetonitrile	(CH ₃) ₂ N(CH ₂) ₂ Cl	0.0.	•	(65)	815
	3-Methyl-2-(1-naphthyl)valeronitrile				C41501 I-C10H7C(C4H9-5ec)[(CH2)2N(CH3)2]CN (92)	740
	CH[(CH ₂) ₂ N(CH ₃)CH ₂ C ₆ H ₃]CN	n-C4H9Br ²	•	-	C[(CH ₁) ₂ N(CH ₃)CH ₂ C ₆ H ₂](C ₆ H ₉ **)CN ⁽⁷⁶⁾	568
		BrCH ₂ CO ₂ C ₂ H ₃	NaOC ₂ H ₅	С²н'он	HO ₂ CCH ₂ CN (10) ⁶	816
		XCH2CO2C2H3				
			NaH N-OC H	Toluene	$I, X = CI, R = CH_2CO_2C_2H_3 (-)$	817
		CICH2CH(CH3)CH2Br	NaNH ₂	- C2H3OH	$I, R = CH_2CH(CH_3)CH_2CI (-)$	812
		CH ₃ CHBrCO ₂ C ₂ H ₃ Br(CH ₂) ₂ CO ₂ C ₂ H ₃	NaOC ₂ H ₃	C ₂ H ₃ OH	I, R = CH(CH ₃)CO ₂ C ₂ H ₃ (21) ^b	816
	C6H3CH(C8H17-n)CN	(C ₂ H ₃ O) ₂ CHCH ₂ Br	NaNH2	Et ₂ O	$C_6H_5C(C_8H_{17^{-}}n)[CH_2CH(OC_2H_3)_2]CN$ (80)	637,638
	C ₆ H ₃ (CH ₂) ₂ CH(C ₆ H ₅)CN 3-Methyl-2-(1-naphthyl)valeronitrile	(CH ₃) ₂ NCH ₂ CH(CH ₃)Cl	-	C ₆ H ₆	C ₆ H ₃ (CH ₂) ₂ C(C ₆ H ₃)[CH ₂ CH(OC ₂ H ₃) ₂]CN (85) 1-C ₁₀ H ₇ C(C ₄ H ₈ -sec)[CH(CH ₃)CH ₂ N(CH ₃) ₂]CN (90)	637,638 740
		4-(2-Chloroethyl)morpholine			1-C10H7C(C4H9-sec)(CN)(CH3)2N (74)	740
		1-(2-Chloroethyl)piperidine			1-C10H7C(C4H9-sec)[(CH2)2N(CH2)3]CN (87)	740
	CH[(CH ₃) ₂ N(CH ₃)CH ₂ C ₆ H ₃	C ₆ H ₃ CH ₂ Cl ^e	•	÷	C[(CH ₃) ₂ N(CH ₃)CH ₂ C ₆ H ₅](CH ₂ C ₆ H ₅)CN (73)	568
	(4-CH ₃ C ₆ H ₄) ₂ CHCN 4-Ethyl-2-phenylheptanenitrile	C ₆ H ₅ O(CH ₂) ₂ Br [(C ₂ H ₅) ₂ NCH ₂] ₂ CHCl	LiN(C2H3)2 NaNH2	C ₆ H ₆ Toluene	(4-CH ₃ C ₆ H ₄) ₂ C[(CH ₂) ₂ OC ₆ H ₃]CN (88) C ₆ H ₃ C[CH ₂ CH(C ₂ H ₃)C ₃ H ₇ -#](CH[CH ₂ N(C ₂ H ₃) ₂])CN () Q	562 665
	C ₆ H ₃ (CH ₂) ₂ CH(C ₆ H ₃)CN	N-(3-Bromopropyl)phthalimide		C ₆ H ₆ , DMF	$C_{6}H_{3}(CH_{2})_{2}C(C_{6}H_{3})(CN)(CH_{2})_{3}N$ (72)	643,716
	2-(1-Naphthyl)hexanenitrile 2-(1-Naphthyl)-4-hexenenitrile	сн₂=сн(сн₂)₅сі ″	-	Et_O 	$ \begin{array}{c} $	664 664
	C,H,O	CH40		NH3	NC (86)	809
C17	(I-C ₁₀ H ₇)CH[(CH ₂) ₃ N(CH ₃) ₂]CN 5-Dimethylamino- 2-(I-naphthyl)valeronitrile	C2H3Br ⁴ (-C3H3Br	Harris	C ₆ H.	$I-C_{10} + C(C_{3}H_{3})[(CH_{3})_{3}N(CH_{3})_{2}]CN (83)$ $I-C_{10}H_{7}C(C_{3}H_{7}-I)[(CH_{2})_{3}N(CH_{3})_{2}]CN (90)$	741 741

C...

C.,.

ORGANIC REACTIONS

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALKYL HALIDES, ALKYL SULFONATES, EPOXIDES, AND AZIRIDINES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	H CN				CH3CH=CH3	
C ₁₇ (Conid.)	C ₂ H ₃	CH2=CHCH2Br	NaC(C ₆ H ₅) ₃	-	H C ₂ H, (100)	818
	CH,O CH,				CH,O CI(CH ₂) ₂ CN CH,	
	$\alpha \beta$	Cl(CH ₂) ₃ Br	NaNH ₂		(\rightarrow)	812
	n-C4H+C(C1H#),CH(R)CN	R'Br			$n-C_4H_9Q(C_3H_7-n)_2Q(R)(R)CN$ I, $n-C_4H_9Q(C_3H_7-n)_2Q(R)=C=N-R'$ II	
		(1998)		Et ₂ O	$R = C_4 H_9 \cdot n, R' = C_4 H_9 \cdot n \ 1 \ (38), 11 \ (44)$	256
					$\mathbf{R} = \mathbf{C}_{4}\mathbf{H}_{9} \cdot \mathbf{n}, \ \mathbf{R}' = \mathbf{C}_{4}\mathbf{H}_{9} \cdot \mathbf{i} (14), \ \mathbf{ii} (33)$	256
				THE	$\mathbf{R} = \mathbf{C}_4 \mathbf{H}_9 \cdot \mathbf{i}, \ \mathbf{R}' = \mathbf{C}_4 \mathbf{H}_9 \cdot \mathbf{i} \mathbf{I} (6), \ \mathbf{II} (28)$	256
	5-(Dimethylamino)-	(CH ₃) ₂ N(CH ₂) ₃ Cl	-	C.H.	$I = C_4 \Pi_{g} M_{R} = C_4 \Pi_{g} M_{R} = (27, 11, (39))$ $I = C_{10} H_{7} C[(CH_{2})_{3} N(CH_{3})_{3}]_{2} CN (86)$	741
	2-(1-naphthyl)valeronitrile			Taluana	A CH OC H CH C/C H OCH AV/CH \ N/C H \ ICN ()	
	44((C ₂ H ₃) ₂ NCH ₂ CH ₂ O)- C ₆ H ₄ CH(C ₆ H ₄ CH ₃ -4)CN	C ₆ H ₃ CH ₂ Cl		NH ₃ , Et ₂ O	4-[(C ₁ H ₂) ₂ N(CH ₂) ₂ O]C ₆ H ₄ C(C ₆ H ₄ CH ₃ -4)(CH ₂ C ₆ H ₃)CN (-)	820
C	I-C10H7CH(C.H.)CN	CH ₃ r	50% aq NaOH, [C,H3CH2N(C2H3)3]Cl	10 4 1	I-C10H7C(C4H3)(CH3)CN (95)	97
		CH2Br2'			1-C10H7C(C6H3)(CH3Br)CN (85)	97
		C ₂ H ₃ Br			$1-C_{10}H_{7}C(C_{6}H_{5})(C_{2}H_{5})CN$ (91)	97
		Br(CH ₂) ₂ Br	50% aq NaOH, [C.H.SCH2N(C2H3)3]Cl		$1-C_{10}H_7C(C_6H_5)[(CH_2)_2Br]CN (88)$	97
	6-(Dimethylamino)-2-	i-C ₃ H ₇ Br	NaNH ₂	12.	$I - C_{10}H_7C[(CH_2)_4N(CH_3)_2](C_3H_7-0CN (-)$	629
	I-C10H2CH(C+H4)CN	-	50% ag NaOH, [C.H.CH.N(C.H.),]CI	-	I-C1+H+C(C+H+)(C+H+-0CN (50)	97
	Contraction in the second	CH2=CHCH2Br			1-C10H7C(C4H3)(CH2CH=CH2)CN (99)	97
		n-C ₄ H ₉ Br	•		1-C10H7C(C6H3)(C4H9-n)CN (88)	97
		Br(CH ₂) ₄ Br			I-C10H7C(C6H3)[(CH2)4Br]CN (92)	97
		(C ₂ H ₅) ₂ N(CH ₂) ₂ Cl ^r		-	$1-C_{10}H_{7}C(C_{6}H_{5})[(CH_{2})_{2}N(C_{2}H_{5})_{2}]CN$ (66)	97
		L/2-Chloroethyl)nineridine	-		$I - C_{10}H_2C(C_6H_5)(CH_2C_6H_5)(CN_5)$	97
		1-(3-Chloropropyl)piperidine		-	$1 - C_{10} + C(C_{10} + C(C_{10})) + N(CH_{10}) + C(C_{10} + C(C_{10})) + N(CH_{10}) + C(C_{10} + C(C_{10})) + N(CH_{10}) + C(C_{10}) + $	97
		(CAH3)2CHCF	C• 1		I-C10H7C(C+H4)[CH(C+H4)]CN (50)	97
C.,.	I-C10H2CH(CH2C6H3)CN	CH,I		_	1-C10H7C(CH7C4H4)(CH7)CN (69)	97
			NaNH ₂	Tolucne	" (100)	747
	1-C10H7CH[(CH2)3N(C2H5)2]CN	i-C ₃ H ₇ Br		C.H.	I-C ₁₀ H ₇ C[(CH ₂) ₃ N(C ₂ H ₃) ₂](C ₃ H ₇ -f)CN (86)	741
	[(C ₂ H ₅) ₂ NCH ₂] ₂ CHCH(C ₆ H ₅)CN			Toluene	$[(C_{2}H_{5})_{2}NCH_{2}]_{2}CHC(C_{3}H_{7}-i)(C_{6}H_{5})CN (-)$	611
	1-C1003C0[[C02)]0[C02]4]C0			CeHe	1-C10H7C[(CH2)3N(CH2)4](C3H7-1)CN (/4)	/41
	5-(1-Morpholino)- 2-(1-naphthyl)valeronitrile		•	•	1-C10H7C(C3H7-1)(CN)(CH2)3N 0 (58)	741
	[(C2H3)2NCH2]2CHCH(C4H3)CN	i-C4H,Br		Toluene	[(C ₂ H ₅) ₂ NCH ₂] ₂ CHC(C ₆ H ₅)(C ₄ H ₉ -i)CN (-)	611
	Chachice Haoce Hadice	(CH ₃) ₂ N(CH ₂) ₂ Cl	KNH2		CH2C(C6H4OC6H34)[(CH3)2N(CH3)2]CN	635
	3-Cyclohexyl-3-(2-furyl)- 2-phenylpropionitrile	-			CH(C4H11)C(C4H2)[(CH2)2N(CH3)2]CN (-)	753
		Br				
	[(C ₂ H ₃) ₂ NCH ₂] ₂ CHCH(C ₆ H ₃)CN	\bigcirc	NaNH ₃		[(C ₁ H ₃) ₂ NCH ₂] ₂ CHC(C ₆ H ₃)(C ₃ H ₆)CN (-)	611
	1-C10H,CH[(CH2)3N(C2H3)2]CN	(CH ₃) ₃ N(CH ₃) ₃ Cl		C.H.	I-C.,H-CT(CH.),N(C.H.),JT(CH.),N(CH.),JCN (-)	741
	[(C ₂ H ₃) ₂ NCH ₂] ₂ CHCH(C ₆ H ₃)CN	n-C ₄ H ₁ Br C ₄ H ₂ CH ₂ Cl	-	Toluene	$[(C_{3}H_{2})_{3}NCH_{2}]_{3}CHC(C_{6}H_{3})(C_{6}H_{1,2}n)(CN) (-)$ $[(C_{3}H_{3})_{3}NCH_{2}]_{3}CHC(C_{6}H_{3})(CH_{3}C_{6}H_{3})CN (-)$	611

TABLE I. ALKYLATION OF NITRILE-STABILIZED CARBANIONS WITH

ALKYL HALIDES,	ALKYL SULFONATES,	EPOXIDES, AND	AZIRIDINES	(Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₉	C ₆ H ₅ CH(CN)CH[CH ₂ N(C ₂ H ₅) ₂] ₂	C ₆ H ₃ CH ₂ Cl	NaNH ₂	Toluene	C ₆ H ₅ C{CH[CH ₂ N(C ₂ H ₅) ₂] ₂ }(CH ₂ C ₆ H ₅)CN (45)	665
(Conia.)	3-Cyclohexyl-3-(2-furyl)- 2-phenylpropionitrile	1-(2-Chloroethyl)piperidine	KNH ₂		$ \int_{O} CH(C_{6}H_{1})C(C_{6}H_{3})[(CH_{2})_{2}N(CH_{2})_{3}]CN^{(-)} $	753
	[(C ₂ H ₃) ₂ NCH ₂] ₂ CHCH(C ₆ H ₃)CN 4-C ₆ H ₁₁ C ₆ H ₄ CH(C ₃ H ₁₁ -i)CN	[(C ₂ H ₃) ₂ NCH ₂] ₂ CHCl	NaNH2		[(C ₂ H ₃) ₂ NCH ₂] ₂ CHC(C ₆ H ₃)(CH[CH ₂ N(C ₂ H ₃) ₂] ₂)CN () 4-C ₆ H ₁ C ₆ H ₄ C(C ₁ H ₁₁ -1)(CH[CH ₂ N(C ₂ H ₃) ₂] ₂)CN ()	611 665
	1-C10H7CH[(CH2)3N(CH2)5]CN	i-C3H7Br		C ₆ H ₆	1-C10H7C[(CH2)3N(CH2)3](C3H7-1)CN (73)	741
C20	4-C ₆ H ₁₁ C ₆ H ₄ CH(C ₆ H ₁₁)CN CH(C ₆ H ₃)CN	[(C ₂ H ₃) ₂ NCH ₂] ₂ CHCl		Toluene	4-C ₆ H ₁₁ C ₆ H ₄ C(C ₆ H ₁₁){CH[CH ₂ N(C ₂ H ₅) ₂] ₂ }CN (−)	665
	$\langle \rangle$	1-Chloroacenaphthene	50% aq NaOH, [C6H3CH3N(C2H3)3]Cl	1	(31)	81
C21	(C ₆ H ₅) ₂ CHCH(C ₆ H ₅)CN	n-C ₄ H ₉ Br	KNH ₂ (1 cq) " (2 cq)	NH,	$(C_{6}H_{3})_{2}CHC(C_{6}H_{3})(C_{4}H_{9}-n)CN$ (85)	110
	ArCH(C ₆ H ₄ CH ₃ -4)CN	Ar'CH ₂ Cl			$ArO(C_6H_6CH_3-4)(CH_2Ar)(CN 1 1 Ar = C_6H_6(CH_3Ar)(CF_3) - 4 (CH_3Ar)(CF_3Ar)(CF_3Ar) - 4 (CH_3Ar)(CF_3Ar) - 4 (CH_3Ar) - 4 (C$	110
			NaNH ₂	NH ₃ or toluene	I, $Ar' = C_6 H_4 Cl-4$ (53)	821
				NH,	$= C_6 H_5$ (61)	821
				Toluene	$= C_6 H_4 Cl-2$ (46)	821
			-		$= C_6 H_4 Cl-3$ (12)	821
				NH ₃	$= C_4 H_3 Cl_2 - 3.4$ (83)	821
					$= C_6 H_3 Cl_2 - 2.4$ (73)	821
					$= C_6 H_4 NO_2 - 4$ (58)	821
					$= C_6 H_4 NO_2 - 3$ (57)	821
					$= C_6 H_4 F_4$ (79)	821
				Toluene	$= C_6 H_{11}$ (39)	821
			-	NH ₃	$= (C_{5}H_{4}N-4) (-)$	821
					$= C_6 H_4 OCH_3 - 4$ (93)	821
					$= C_6 H_4 CF_3 - 4$ (74)	821
	(C.H.)-CHCH(C.H.)CN	C.H.CH.CI	KNH.	NUL	$= C_6 H_4 CH_3 - 4 (74)$	821
	(can show of the state of the s		"	NH,	$(C_6H_5)_2(CH_2C_6H_5)CH(C_6H_5)CN$ (80)	109,108
		(C.H.)-CHCI	-	NH. ELO	$(C_{6}H_{3})_{2}CHC(C_{6}H_{3})(CH_{2}C_{6}H_{3})CH (-)$	161
				NH.	" (63)	110
	CH[(CH ₂) ₄ N(C ₃ H ₇ -f) ₂]CN					
C22	φ	i-C ₃ H ₇ Br	NaNH2	C _s H _s	1-(4- <i>i</i> -C ₄ H ₉)C ₁₀ H ₆ C(C ₃ H ₇ - <i>i</i>)[(CH ₂) ₄ N(C ₃ H ₇ - <i>i</i>) ₂]CN	815
	C4H9-i					
	4-C+H3CH2OC+H4CH(C+H4CH2-4)CN	3-CIC,H,CH,CI	KNH,	Q	4C.H.CH.OC.H.C/C.H.CH.AVCH.C.H.CL3/CN (-)	820
	4-C.H.C.H.CH[(CH2)2N(C,H7-1)2]CN	(I-C3H7)2N(CH2)2CI	NaNH ₂	Toluene	4-C.H.C.H.C.I(CH.).N(C.HD.].CN (-)	803
	3,4-(C6H3CH2O)2C6H3CH2CN	3,4,5-(CH,O),C,H2CH2CI	LDA	THF	3,4-(C+H+CH+O)+C+H+CH(CH+C+++(OCH+)+-3,4,5)CN (45)	822
	(C ₄ H ₅) ₃ P=C(CO ₂ CH ₃)CH ₂ CN	n-C10H21I	•	THF	$(C_6H_5)_2P = C(CO_2CH_3)CH(C_{10}H_{21}-n)CN$ (94)	823
c.	Ø-CH₂CN	CICH ₂ CN	50% aq NaOH, Adogen 464	1,2-Cl ₂ C ₆ H ₄	(D-CH(CH ₂ CN)CN (88)	824

"The initial product was treated with (CH3)3SiCl.

* The initial product was hydrolyzed.

C22

C,

"The precise leaving group in the alkylating agent was unspecified.

"The product was isolated as the corresponding amide after treatment with aqueous acid.

* The alcohol was oxidized in a Guerbet reaction to an aldehyde, which condensed with the nitrile starting material. Subsequently, the unsaturated nitrile was reduced to the observed product.

^f The yields were determined by vapor-phase chromatography.

* The initial product was converted to a carboxylic ester.

* The alkylation of the dianion of the y-ketonitrile with one equivalent of alkylating agent was followed by the spontaneous elimination of HCN. Alternatively, the alkylated y-ketonitrile was treated with NaNH2 in C6H6 to effect elimination of HCN.

'The product was isolated as a mixture of the hydroxynitrile and cyclic iminoester.

¹ The product was isolated as the cyclic ammonium halide.

154

REACTIONS OF NITRILE-STABILIZED CARBANIONS

157

Refs.

145

142 145

146

146,283

283,146

283,146

283,146

145

141

146

146

146

146

145

		TABLE	II. ARYLATION OF NITRILE-	STABILIZED CARBA	NIONS
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
C1	CH ₃ CN	C ₆ H ₅ X	KNH ₂ , K	-	C ₆ H ₃ CH ₂ CN (2-31)
		C ₆ H ₃ Cl [C ₆ H ₅ N(CH ₃) ₃]I	KNH2 KNH2, K	NH3 —	X = F, Cl, Br, I $C_6H_5CH_2CN$ (-), (C_6H_5) ₂ CHCN (-) $C_6H_5CH_2CN$ (5)
		Q	LDA	THF, 0°	C ₆ H ₅ CH ₂ CN (68) ⁴
		Cr(CO) ₃			CH2CN CH2CN
		-		THF, -30°	$(60)^{b} + (10)^{b}$
		C ₆ H ₅ OP(O)(OC ₂ H ₅) ₂	KNH2, K	-	$C_6H_3CH_2CN$ (3)
		CH ₃ Cr(CO) ₃	LDA	ТНҒ, НМРА	2-CH ₃ C ₆ H ₄ CH ₂ CN (35)," 3-CH ₃ C ₆ H ₄ CH ₂ CN (63)," 4-CH ₃ C ₆ H ₄ CH ₂ CN (2),"
		Cr(CO) ₃		THF	2-CH ₃ OC ₆ H ₄ CH ₂ CN (3)," 3-CH ₃ OC ₆ H ₄ CH ₂ CN (97)"
		CH ₃ O CH ₃ O		THF, HMPA	2,3-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN (48) ⁴
C.	n-C3H7CN i-C3H7CN	Cr(CO)3 C6H3I C6H3Br	KNH2, K NaNH2	NH3	$C_6H_5CH(C_2H_5)CN$ (29), $C_6H_5CH_2CH_2CH_3$ (6) $C_6H_5C(CH_3)_2CN$ I (23)
		Q	LDA	THF, 15-20 hr, 25°	" (85) "
		Cr(CO)3	-	THF, 15 min, 0°	2-CIC ₆ H ₄ C(CH ₃) ₂ CN (2), ^a 3-CIC ₆ H ₄ C(CH ₃) ₂ CN (56), ^a I (19) ^a
		Q			I (94)*
		cr(CO) ₃		THF	$(60)^{6}$ (80) ⁶ + $(C(CH_3)_2CN)$ (5) ⁶
					+ C(CH ₃) ₂ CN (5)*

156

ORGANIC REACTIONS

TABLE II. ARYLATION OF NITRILE-

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s
C4 (Contd.)	i-C₃H ₇ CN	CH3	LDA	ТНҒ, НМРА	2-CH ₃ C ₆ H ₄ C(CH ₃) ₂ C 4-CH ₃ C ₆ H ₄ C(CH ₃)
		CH30		THF	2-CH ₃ OC ₆ H ₄ C(CH ₃);
		Cr(CO)	3		осн,
			*		
					C(CH ₃) ₂ CN 3-HOC ₆ H ₄ C(CH ₃) ₂ CN C ₆ H ₅ C(CH ₃) ₂ CN (5
		CH ₃ O	3 LDA	ТНF , НМРА	2,5-(CH ₃ O) ₂ C ₆ H ₃ C(C
		CH ₃ O CH ₃ O CH ₃ O	3 	-	2,3-(CH ₃ O) ₂ C ₆ H ₃ C(C 3,4-(CH ₃ O) ₂ C ₆ H ₃ C
C,	i-C ₄ H ₉ CN	C ₆ H ₅ Cl	KNH ₂ , K	-	C ₆ H ₅ CH(C ₃ H ₇ -i)CN
C,	Pyrazineacetonitrile	C₅H₅Br	NaNH ₂	NH3, dioxane	
C ₈	2-CIC ₆ H₄CH₂CN C ₆ H₃CH₂CN	2-Chloropyrimidine 2-Chloropyrazine 2-Bromopyridine	NaH NaNH2	THF Toluene	2-ClC ₆ H ₄ CH(C ₄ H ₃ N ₂ C ₆ H ₅ CH(C ₄ H ₃ N ₂)CN C ₆ H ₅ CH(C ₅ H ₄ N-2)Cl
		3-Bromopyridine 4-Bromopyridine			C ₆ H ₅ CH(C ₅ H ₄ N-3)CI C ₆ H ₅ CH(C ₅ H ₄ N-3)CI
	4-ClC ₆ H₄CH₂CN	2-Bromopyridine			4-CIC ₆ H ₄ CH(C ₅ H ₄ N- 4-XC ₆ H ₄
	XC ₆ H₄CH₂CN	4-YC ₆ H ₄ NO ₂			()
					4-XC6H4CH(C6H4N
			KOH "	СН3ОН	I X = H, Y = CI (4) $I X = H Y = Br (7)$
					I X = Y = CI (46)
			•		I X = Cl, Y = Br (4)
				Py	II X = H, Y = CI (0)
					A = H Y = H T

..

REACTIONS OF NITRILE-STABILIZED CARBANIONS

159

STABILIZED CARBANIONS (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
ТНҒ, НМРА	2-CH ₃ C ₆ H ₄ C(CH ₃) ₂ CN (1-2), ^a 3-CH ₃ C ₆ H ₄ C(CH ₃) ₂ CN (96-97), ^a 4-CH ₃ C ₆ H ₄ C(CH ₃) ₂ CN (2) ^a	283,146
THF	2-CH ₃ OC ₆ H ₄ C(CH ₃) ₂ CN (3), ⁴ 3-CH ₃ OC ₆ H ₄ C(CH ₃) ₂ CN (97) ⁴	283,146,285
	осн,	
	(98) ^c C(CH ₁) ₂ CN	285
" "	3-HOC ₆ H ₄ C(CH ₃) ₂ CN (50) ^b C ₆ H ₅ C(CH ₃) ₂ CN (55) ^d	285 285
ТНҒ, НМРА	2,5-(CH ₃ O) ₂ C ₆ H ₃ C(CH ₃) ₂ CN (92) ⁶	283,146
•	2,3-(CH ₃ O) ₂ C ₆ H ₃ C(CH ₃) ₂ CN (85)," 3,4-(CH ₃ O) ₂ C ₆ H ₃ C(CH ₃) ₂ CN (13)"	283,146
-	$C_6H_5CH(C_3H_7-i)CN$ (19), $C_6H_5CH_2CH(CH_3)_2$ (37)	145
NH ₃ , dioxane	(-)	272
THE	2-CIC, H, CH(C, H, N,)CN (28)	827
Toluene	$C_6H_4CH(C_4H_4N_2)CN$ (80)	731
	$C_6H_5CH(C_5H_4N-2)CN$ (-)	828
	$C_6H_5CH(C_5H_4N-3)CN$ (-)	828
	$C_6H_5CH(C_5H_4N-4)CN (-)$	828
	$4-CIC_6H_4CH(C_5H_4N-2)CN (-)$	828
	$\overset{4-XC_{\delta}H_{4}}{\bigvee} \qquad \qquad$	
	4-XC ₆ H ₄ CH(C ₆ H ₄ NO ₂ -4)CN II	
CH,OH	I = H, Y = CI (46)	154
"	I = H, Y = Br (79)	154
	I X = Y = CI (46)	154
	I X = Cl, Y = Br (48)	154
Ру	II $X = H, Y = CI$ (68)	154
	II $X = H, Y = Br$ (76)	154
	II $X = H, Y = OCH_3$ (45)	154

REACTIONS OF NITRILE-STABILIZED CARBANIONS

161

TABLE II. ARYLATION OF NITRILE-	TABLE	II.	ARYLATION OF NITRILE-
---------------------------------	-------	-----	-----------------------

STABILIZED CARBANIONS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	XC ₆ H ₄ CH ₂ CN	4-YC6H4NO2	КОН	CHIOH	II $X = H, Y = OCH_1$ (15)	154
(Contd.)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	Py	II $X = Y = CI$ (86)	154
					II $X = Cl, Y = Br$ (87)	154
					II $X = Cl, Y = OCH_3$ (55)	154
				CH ₃ OH	II $X = CI, Y = OCH_3$ (18)	154
				Py	II $X = Y = OCH_3$ (34)	154
				СН3ОН	II $X = Y = OCH_3$ (9)	154
	C ₆ H ₃ CH ₂ CN	3-O2NC6H4CO2H	•	-		156
		3,4-(O2N)ClC6H3CO2H		•	HO ₂ C N (59)	156
		C ₆ H ₅ I	C10H8Na	THF	C_6H_3 (C_6H_3) ₂ CHCN (11)	198
	4-XC6H₄CH₂CN	YC ₆ H ₄ NO ₂			Y I	
			VOI		NC C_6H_4X-4	
			KOH	СН3ОН	1 X = H, Y = H (77)	158
					1 X = H, Y = CI-2 (92)	157
					X = H, Y = CI-3 (53)	157
					$X = H, Y = CH_3 - 2$ (72)	157
					$A = H, I = CH_3 - 3$ (76)	157
					$1 = H, 1 = O(H_3 - 2 - (67))$	157
					$I = H, I = O(H_3 - 5)$ (23)	157
				**	$X = H, Y = C_{1,2}^{-2}, C_{1,3}^{-3}$ (62)	157
					$X = H, Y = C_{12} - 2,5$ (33)	157
					$X = H, Y = (OCH_1)_{-2} 5$ (88)	157
				**	$I = H, Y = (CH_1)_{-2.5}$ (53)	157
					$I = H Y = OCH_{-2} CI_{-5} (82)$	157
					$I = H Y = CH_{-2} Cl_{-5} (92)$	157
				*	$I = H Y = C - 2 C H_{-5} (77)$	157
					I = C = H (77)	158
					I = CI =	157
					I = CI =	157
					$I = CI = CH_{-2}$ (60)	157
					$I = CI = CI = CH_{3}$ (33)	157
			-		$I = CI = CI = OCH_{-2}$ (80)	157
				**	$I = CI = CH_{1} = OCH_{1} = 3$ (89)	157
					$I = CI, Y = CH_{1-2}, CI_{-3}$ (80)	157
					$I = CI, Y = CI_2 - 2.3$ (92)	157
					$I = CI, Y = CI_2 - 3.5$ (94)	157
				-	I $X = CI, Y = (OCH_3)_2 - 3,5$ (80)	157

No. of C Atoms

C₈ (Contd.)

C,

ORGANIC REACTIONS

TABLE II. ARYLATION OF NITRILE-

STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

				and an II Contrasting.	
Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Ref
4-XC6H4CH2CN	YC ₆ H ₄ NO ₂	КОН	СНЗОН	1 $X = Cl, Y = (CH_3)_2 - 3,5$ (43)	157
				$I = CI, Y = OCH_3 - 2, CI - 5$ (81)	157
				$I = CI, Y = CH_3 - 2, CI - 5$ (87)	157
				I $X = Cl, Y = Cl-2, CH_3-5$ (77)	157
C ₆ H ₃ CH ₂ CN	Methyl 6-chloronicotinate	NaNH ₂	C ₆ H ₆		829
	Eshed 6 althous institute	2		$I, R = CO_2 CH_3 (5)$	970
	Etnyi 6-chioronicotinate			NOH	829
4-XC ₆ H ₄ CH ₂ CN	C10H7NO2-1			I I	
		1110		NC C ₆ H ₄ X-4	
		кон "	"		157
C₀H₃CH₂CN	9-Fluorobenzanthrone		i-C₃H7OH	F CH(C ₆ H ₅)CN I (55)*	830
C ₆ H ₅ ¹³ CH ₂ CN				U I (with ¹³ C label) (82) ^e	831
4-FC₀H₄CH₂CN		-	•	F CH(C ₆ H ₄ F-4)CN (50)*	830
4-CH₃C6H₄CH₂CN	2-Chloropyrazine	NaNH ₂	C ₆ H ₆	0 4-CH ₃ C ₆ H ₄ CH(C ₄ H ₃ N ₂)CN (62)	731
4-CH3OC6H4CH2CN	YC6H₄NO2				
				NC C.H.OCH.4	
		КОН	CH-OH	I Y = H (77)	158
			"	$I Y = CH_{3} - 2, Cl - 3$ (80)	157
			•	$I Y = C_{1,-3,5}$ (91)	157
				$I Y = (OCH_1)_{2} - 3.5$ (65)	157
				$I Y = (CH_1)_2 - 3.5$ (69)	157
				$I = OCH_{1}-2, CI-5$ (84)	157
			•	$I Y = CH_3 - 2, Cl - 5$ (88)	157
				$I Y = Cl-2, CH_3-5$ (80)	157

Refs.

No. of C Atoms

C9 (Contd.)

ORGANIC REACTIONS

TABLE II. ARYLATION OF NITRILE-

STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

			Peaction		
Nucleophile	Electrophile	Base	Conditions	Product(s) and Yield(s) (%)	Refs.
				NOH	
4-CH ₃ OC ₆ H ₄ CH ₂ CN	1-Nitronaphthalene	кон	СН₃ОН	(36)	157
				NC C6H4OCH3-4	
				(N)	
4-XC6H4CH2CN	4-YC6H4NO2				
				X I X = OCH ₃ , Y = Cl (49)	154
				$I X = OCH_3, Y = Br (69)$	154
			Py	II $X = OCH_3, Y = CI$ (65)	154
				II $X = OCH_3$, $Y = Br$ (05) II $Y = Y = OCH$ (24)	154
			CH-OH	$X = Y = OCH_3$ (34) II $X = Y = OCH_3$ (9)	154
-NCC+H+CH+CN	XC.H.Br		chijon	XC.H.CH(C.H.CN-2)CN I	
			Pv	$I = NO_{2}-4$ (69)	832
				$I X = NO_2 - 2 (-)$	832
				$I = OCH_3 - 3 - NO_2 - 4$ (63)	832
	CI			C(CH ₃)(C ₆ H ₅)CN	
C6H3CH(CH3)CN				1	
	X3 X1			X3 X1	
	X2			x ²	
		50% aq NaOH, [C4H4CH2N(C2H4)3]Cl	-	I $X^1 = X^2 = H, X^3 = NO_2$ (82)	82-85
				$I X^2 = X^3 = H, X^1 = NO_2$ (80)	83,82,8
			-	I $X^1 = CO_2C_4H_{9}$ -t, $X^2 = H$, $X^3 = NO_2$ (83)	83,82,8
			-	$I X^1 = CH_3, X^2 = H, X^3 = NO_2$ (88)	83,82
			-	$I X^{1} = CI, X^{2} = H, X^{3} = NO_{2}$ (92)	86,82-8
			-	$I X^{1} = NO_{2}, X^{2} = H, X^{3} = CI (85)$	80,83
			-	$1 X' = X' = NO_2, X' = H (73)$ $1 X' = H Y^2 = C(Y^3 = NO) (92)$	83
			-	$I X^{2} = H, X^{2} = O(H, X^{3} = NO_{2})$ $I X^{1} = H X^{2} = O(H, X^{3} = NO_{2})$ (81)	83
		•	- 2	$I = X^{1} = COC_{6}H_{6}, X^{2} = H, X^{3} = NO_{2}$ (67)	87,83
	NO ₂				
				$I X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}CI-4 (75)$	87,83
	X3 X1		-	I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}Br-4$ (69)	87,83
	X2		—	I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}OCH_{3}-4$ (64)	87,83
				$1 X' = X' = H, X' = COC_6H_4CH_3-4 $ (93)	87,83
		50% ag NaOH	-	$X^{*} = X^{*} = H, X^{*} = COC_{6}H_{5}$ (82)	87,83
		dibenzo-[18]-crown-6	-	$A^{-} = A^{-} = H, A^{-} = COC_6 H_5$ (0/)	521
			<u> </u>	$I X^1 = X^2 = H, X^3 = NO_2$ (81)	527

C11

ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

167

TABLE II. ARYLATION OF NITRILE-

STABILIZED CARBANIONS (Continued)

		(2797)		a company a com	······	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ (Contd.)	C ₆ H ₅ CH(CH ₃)CN	C ₆ H ₅ NO ₂	NaNH ₂ or NaOCH ₃	NH ₃ or — THF, -30 to -60°	$C_6H_5C(CH_3)(C_6H_4NO_2-4)CN$ (15), $C_6H_5C(CH_3)(C_6H_4NH_2-4)CN$ (15), $C_6H_5COCH_3$ I $C_6H_5C(CH_3)(CN)$	267 (30), ₆ H ₅)CN
						II (30)
			NaOH or NaOCH	CH-OH	L (30) IL (60)	267
C10	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	2-Chloropyrazine	NaNH ₂	NH ₃ , ether,	$3,4-(CH_3O)_2C_6H_3CH(C_4H_3N_2)CN$ (35)	731
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	2-Bromopyridine	•	Toluene	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(C ₅ H ₄ N-2)CN $(-)$	828
	C ₆ H ₃ CH(C ₂ H ₅)CN	X3 X1				
		X ²			x ²	
			50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅) ₃]Cl	-	$1 X^{1} = X^{2} = H, X^{3} = Cl (95)$	83
				-	$I X^1 = NO_2, X^2 = X^3 = H (95)$	83
				-	1 $X^1 = Cl, X^2 = H, X^3 = NO_2$ (61)	86,83
				-	$1 X^{1} = NO_{2}, X^{2} = H, X^{3} = CI (75)$	86,83
					$\begin{array}{c} 1 X^{2} = X^{2} = NO_{2}, X^{2} = H^{-}(61) \\ 1 X^{1} = H, X^{2} = CI, X^{3} = NO_{2}^{-}(78) \\ CI \qquad \qquad C(C_{2}H_{5})(C_{6}H_{5})CN \\ + \end{array} $ (3)	83
	C ₆ H₃CH(C₂H₅)CN	x^3 x^2 x^1			$X^{3} \xrightarrow{VO_{2}} C(C_{2}H_{3})(C_{6}H_{3})CN $	
			50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅) ₃]Cl	-	X^{2} I $X^{1} = COC_{6}H_{5}, X^{2} = H, X^{3} = NO_{2}$ (90)	87,83
		X3 X1		-	I $X^1 = X^2 = H, X^3 = COC_6H_4Cl-4$ (70)	87,83
		X ²				07 03
					$X^{-} = X^{-} = H, X^{-} = COC_6 H_4 Br-4$ (01) $X^{1} = X^{2} = H, X^{3} = COC_6 H_4$ (89)	87.83
C ₁₁	3,4,5-(CH ₃ O) ₃ C ₆ H ₂ CH ₂ CN	2-Chloropyridine	NaH	DMF	3,4,5-(CH ₃ O) ₃ C ₆ H ₂ CH(C ₅ H ₄ N-2)CN (59, crude)	833
	C ₆ H ₃ CH(C ₃ H ₇ - <i>n</i>)CN	X3 X1				
		X ²	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	- 91	X^{2} I $X^{1} = X^{2} = H, X^{3} = NO_{2}$ (74)	84,82,83

REACTIONS OF NITRILE-STABILIZED CARBANIONS

169

TABLE II. ARYLATION OF NITRILE-

STABILIZED CARBANIONS (Continued)

				OTHDIEIEED CA	Abalaions (Commune)	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	C ₆ H ₅ CH(C ₃ H ₇ -i)CN	X3 X2 X1	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅) ₃]Cl	-	$X^{3} \xrightarrow{C(C_{3}H_{7}-i)(C_{6}H_{5})CN}_{X^{2}} II$	
				-	II $X^1 = X^2 = H, X^3 = NO_2$ (62)	83
		o (1		Ξ	II $X^{1} = CI, X^{2} = H, X^{3} = NO_{2}$ (30) II $X^{1} = X^{3} = NO_{2}, X^{2} = H$ (20)	86,83 86,83
	C ₆ H ₅ CH(C ₃ H ₇ -n)CN					
		X*		÷-	X^{2} I $X^{1} = COC_{6}H_{5}, X^{2} = H, X^{3} = NO_{2}$ (60)	83,87
			- -	6	1 $X^1 = X^2 = H, X^3 = COC_6H_4Cl-4$ (78)	83,87
	C ₆ H ₃ CH(C ₃ H ₇ -i)CN	X ³ C ¹		n c o	$X^{3} \xrightarrow{C(C_{3}H_{7}-i)(C_{6}H_{3})CN} II$	83,87
		X*	1. .	-	$ \begin{array}{l} X^{2} \\ \text{II} X^{1} = \text{COC}_{6}\text{H}_{5}, X^{2} = \text{H}, X^{3} = \text{NO}_{2} (60) \\ \text{NOH} \\ \parallel \end{array} $	83,87
C ₁₂	1-Naphthylacetonitrile	C ₆ H ₃ NO ₂	кон	Сн₃он	(65) NC C ₁₀ H ₇ -1	158
					C(C ₆ H ₅)[(CH ₂) ₂ N(CH ₃) ₂]CN	
	C ₆ H ₃ CH[(CH ₂) ₂ N(CH ₃) ₂]CN	4-Chlorocinnoline	NaNH ₂	C ₆ H ₆	(87)	632
					C(C ₆ H ₃)[(CH ₂) ₃ N(CH ₃) ₂]CN	
C13	C ₆ H ₃ CH[(CH ₂) ₃ N(CH ₃) ₂]CN	•	-	•	(73)	632
C14	(C ₆ H ₅) ₂ CHCN 4-ClC ₆ H ₄ CH(C ₆ H ₅)CN	2-Chloropyrazine	;	Toluene	$(C_6H_5)_2C(C_4H_3N_2)CN$ (46) 4-ClC ₆ H ₄ C(C ₆ H ₅)(C ₄ H ₃ N ₂)CN (57)	731 731
	(C ₆ H ₅) ₂ CHCN	X ⁵ X ¹			X ³ X ¹ I	
		•				

168

C12

C13

C14

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE II ARVIATION OF NITRUE-

STABILIZED CARBANIONS (Continued)

	TABLE II. ARTEANOR OF MIRILE		II. TRIERION OF THIREE				
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (-)	Refs.	
C ₁₄ (Contd.)	(C ₆ H ₅)₂CHCN	CI	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$I X^{1} = X^{2} = H, X^{3} = NO_{2} (71)$	83,82,84	
		V3 VI		-	$I X^1 = NO_2, X^2 = X^3 = H$ (88)	83	
		^ T ^		-	$I X^{1} = CI X^{2} = H X^{3} = NO_{2}$ (90)	83,86	
		X ²		1.4	$1 X^{1} = NO_{2}, X^{2} = H, X^{3} = CI$ (93)	83	
				-	$I X^{1} = X^{3} = NO_{2}, X^{2} = H$ (91)	86,83	
		NO ₂			$(C_6H_5)_2C=N(O)$		
		x ²			X^{1} $C(C_{6}H_{3})_{2}CN$ X^{2}		
			NaOCH ₃	CH-OH	II $X^1 = X^2 = H$ (96)	83	
				"	II $X^1 = CL X^2 = H$ (88–92)	83	
					II $X^1 = Br, X^2 = H$ (87)	83	
					II $X^1 = OCH_1, X^2 = H$ (66)	83	
			*	-	II $X^1 = H, X^2 = OCH_3$ (91)	83	
					N C ₂ H _s		
		2-Chloro-3-ethylpyrazine	NaNH ₂	Toluene	(25)	731	
		2 Chloro 56			YN		
		dimethylpyrazine			(42) N C(C ₆ H ₅) ₂ CN	731	
	C ₆ H ₃ CH(CN)(CH ₂) ₂ NO	4-Chlorocinnoline		C ₆ H ₆	$C(C_6H_5)(CN)(CH_2)_2N O$ $N = N$ (74)	632	
					$C(C_6H_5)(CN)(CH_2)_2N(C_2H_5)_2$		
	C ₆ C ₅ CH[(CH ₂) ₂ N(C ₂ H ₅) ₂]CN			•	(87)	632	
C15	4-CH₃OC6H₄CH(C6H₅)CN	2-Chloropyrazine	**	Toluene	(48)		
	C ₆ H ₃ CH(CH ₂ C ₆ H ₅)CN				X ³ C(CH ₂ C ₆ H ₅)(C ₆ H ₅)CN		
		X ²	50% ag NaOH			04 03 03	
			[C ₆ H ₅ CH ₂ N(C ₂ H ₅) ₃]Cl		$1 x^* = x^- = H, \ x^- = NO_2 (88)$	84,82,83	
				-	I $X^1 = NO_2, X^2 = X^3 = H$ (84)	83	
				-	$I X^1 = CI, X^2 = H, X^3 = NO_2$ (82)	86,83	
					$I X^1 = NO_2, X^2 = H, X^3 = CI$ (98)	86,83	
				-	$I X^1 = X^3 = NO_2, X^2 = H (91)$	84,83,86	

170

TABLE II. ARYLATION OF NITRILE-

REACTIONS OF NITRILE-STABILIZED CARBANIONS

		TABL	E II. ARYLATION OF NITRILE-	STABILIZED CAN	RBANIONS (Continued)	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
					C(C ₆ H ₅)(CN)(CH ₂) ₂ N(CH ₂) ₅	
C ₁₅ (Conid.)	C ₆ H ₅ CH[(CH ₂) ₂ N(CH ₂) ₅]CN	4-Chlorocinnoline	NaNH ₂	C ₆ H ₆	(79)	632
	C ₆ H ₃ CH[(CH ₂) ₃ N(C ₂ H ₅) ₂]CN		-	•	$(C_{6}H_{5})(CN)(CH_{2})_{3}N(C_{2}H_{5})_{2}$ (85)	632
	C6H3CH(CH2C6H3)CN	X ³ X ¹			X ³ X ¹ I	
		A	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	\dot{X}^2 I $X^1 = COC_6H_5, X^2 = H, X^3 = NO_2$ (62)	83,8'
		X^3 X^2 X^1	99 99 99 99	1111	I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}Cl-4$ (67) I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}Br-4$ (90) I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}OCH_{3}-4$ (90) I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{4}CH_{3}-4$ (98) I $X^{1} = X^{2} = H, X^{3} = COC_{6}H_{5}$ (92)	87,8 87,8 87,8 87,8 87,8 87,8
C16	C ₆ H ₅ CH(CN)(CH ₂) ₃ N	4-Chlorocinnoline	NaNH ₂	C ₆ H ₆	$C(C_6H_3)(CN)(CH_2)_3N N - $ $N = N$ (70)	632

" The initial product was oxidized with iodine.

^b The initial product was quenched with CF₃CO₂H at low temperature and oxidized with iodine. ^c The initial product was quenched with CF₃CO₂H at low temperature and exposed to aqueous ammonium hydroxide.

"The initial product was quenched with CF3CO2H at low temperature and exposed to ceric ammonium nitrate.

" The initial product was oxidized with oxygen under basic conditions.

172

TABLE III. ACYLATION OF NITRILE-STABILIZED CARBANIONS WITH CARBOXYLIC

ESTERS, ANHYDRIDES, ACID CHLORIDES, NITRILES, AND DIALKYL CARBONATES

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	CH-CN	CH.CN	NaN[Si(CH ₁) ₁] ₂	Et.O	CH_C(NH_)=CHCN (99)	21
-1	ongo.	HCO.C.H.	KOC.H.	C.H.OH Ft.O	KOCH=CHCN (-)	298
		C.H.CO.CH.	NaNH,	NH. Ft.O	C.H.COCH-CN (75 crude)	54
		2-Cvanopyridine			$(2 - C + H \cdot N)C(NH_{2}) = CHCN$ (42)	362
		3-Cvanopyridine			$(2-C_{3}H_{1}H_{2}) = CHCN$ (22)	362
		4-Cyanopyridine			$(A_C H N)C(NH) = CHCN (56)$	362
		r-C-H-COOCO-C-H.	LiN(C.H.)	TUE 750	$= C \cup COCU CN (50)$	302
			2	$1 HF, -73^{\circ}$	$h-c_3 n_7 COCh_2 CN (39)$	502
		⟨ _S ↓ _{CO₂C₂H} ,	t-C₄H ₉ OK		ζ _s ⊥ _{coch₂cn (−)}	834
		XC6H4CN			XC ₄ H ₄ C(NH ₂)=CHCN I	
			NaH	Et-O. t-C.H.OH	I = F-2 (19)	363
			NaNH ₂	NH., Et.O	I = CI-2 (57)	362
			NaH	Et.O. t-C.H.OH	I = Br-2 (25)	363
					I = F-3 (24)	363
					I = F-4 (68)	363,362
					I = CI-4 (85)	363
			•	•	I = Br - 4 (37)	363
					$I = Cl_{2} - 2.6$ (22)	363
			NaN[Si(CH ₂),]	C.H.	1 X = H (-)	21
		C.F.CN	NaNH.	NH- Et-O	$C_{4}F_{4}C(NH_{4})=CHCN$ (35)	362
		XC.H.CN			$XC_{H_{1}}(NH_{2}) = CHCN_{1}$	
		AC6114CIA	NaH	Ft-O t-C.H.OH	$I = CH_{-2}$ (38)	363
			NaNH-	NH. ELO	$X = CH_{2} - 2$ (65)	362
			NaH	Ft.O. t-C.H.OH	$X = CH_{2} - 4$ (52)	363
					$X = CF_{2} \cdot 3$ (43)	363
					$X = CF_{-4}$ (59)	363
					$X = CN_{-3}$ (11)	363
		C.H.CO.CH.	NaNH.	FLO NH.	CH-COCH-CN (94)	54 293
		LCIC H CO.CH.			3-CIC. H. COCH. CN (84)	54
		ACH OC H CO CH			ACHOCHCOCHCN (84)	54
		34(CH) CH CN	NaH	ELO LC HOH	34/CH) CH C(NH) -CHCN (56)	363
		CH CO CH	NaNH.	NU NU	C H COCH CN (83)	204
		"	LiN(C.H.)	THE 750	" (74)	302
		C. H.CN-2	NaNH.	NH ELO	2C H C(NH) = CHCN (22)	362
		C ₆ H ₅ CH=CHCO ₂ R	LINH	NH ₃ , El ₂ O	$C_6H_3CH=CHCOCH_2CN$ I	302
				NH3		295
		4-Cvanobiphenyl	NaNH ₂	NH. Et.O	$4 - C_4 H_2 C_1 (-)$	362.363
0	CHCN	CH CO CH				54
C,	C2H3CH	C H CN	NaN(Si(CH.).].	Ft O	$C \parallel C(N \parallel) = C(C \parallel) C N (1)$	21
		"	LiN(C.H.)		$C_2 n_3 C(Nn_2) = C(Cn_3) C(N (-))$	261
				HMPA, 20		360
		CH CO CH	NaNH.	Et O NU	$C_2 n_3 (C - Nn) C n_3 (C n_3) (-)$	54
		CHCOCH	"	NU	" (27)	204
		2 Cyanonyridina				267
		ACHCHCHCN		NH3, El2O	$A \subset \mathbf{U} \subset \mathbf{U} \subset (\mathbf{N} \mathbf{U}) \longrightarrow C(C \mathbf{U}) \subset (\mathbf{U})$	362
		CHCO.CH			$C H COCH(CH_XCN_{(02)})$	54 202
		Ethyl nicotinate			ACH NCOCH(CH)CN (SA)	54,295
		Ethyi meotinate			(J-CSR414)COCR(CR3)CIV (J4)	54

ORGANIC REACTIONS

TABLE III. ACYLATION OF NITRILE-STABILIZED CARBANIONS WITH CARBOXYLIC

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ESTERS, ANHYDRIDES, ACID CHLORIDES, NITRILES, AND DIALKYL CARBONATES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C, (Contd.)	C.H.CN	C.H.CH=CHCO,C.Ht	LiNH ₂	NH,	C ₄ H ₄ CH=CHCOCH(CH ₄)CN (75)	295
C.	P.C.H.CN	CH.CO.C.H.	NaNH-		CH.COCH(C.H.)CN (66)	294
~.	a-cjiijen	r-C-H-CO-C-H	LiN(C.H.)	THF75°	n-C-H-COCH(C-H-)CN (74)	302
		C ₆ H ₅ CO ₂ C ₂ H ₅	"		$C_6H_5COCH(C_2H_5)CN$ (55)	302
		C ₆ H ₅ CH=CHCO ₂ K	TINIT		$C_6H_5CH = CHCOCH(C_2H_5)CN$	206
			LINH ₂	NH3	$I, R = C_2 H_5 (53)$ $I, R = C_4 H_9 - t (40)$	295
C.	n-C.H.CN	CH,CO,C,H,	NaNH ₂		$CH_1COCH(C_1H_7-n)CN$ (74)	294
	i-C.H.CN	(C,H,O),C=O	LDA	THF	i-C1H2CH(CO2C2H4)CN (56)	292
	n-CAHOCN	C.H.CO2CH	NaNH ₂	NH ₃ , Et ₂ O	$n-C_3H_7CH(COC_6H_3)CN$ (78)	54
		3-CIC6H4CO2CH3			$n-C_3H_7CH(COC_6H_4CI-3)CN$ (70)	54
		C ₆ H ₅ CO ₂ C ₂ H ₅	•	NH ₃	$n-C_3H_7CH(COC_6H_3)CN$ (71)	294
C.	n-C.H.,CN	(C,H,O),CO	LDA	THF	n-C+H+CH(CO+C+H+)CN (76)	292
	- Joint -	(CO,C,H,),	NaOC ₂ H ₃	C,H,OH	$n-C_4H_0CH(COCO_2C_2H_4)CN$ (-)	306
		C.H.CO.C.H.	NaNH ₂	NH,	$C_6H_5COCH(C_4H_9-n)CN$ (66)	294
C,	2-Pyridylacetonitrile	XCH ₂ COCI		-	2-C ₃ H ₄ NCH(COCH ₂ X)CN I	303
		CH CHYCOCI			I, X = CI or Br (-)	202
		chichaeoer			$2 - C_3 H_4 N C H[COCH(C H_3) X] C N T$	303
		C H CHYCOCI			I, X = CI OF BF (-)	
		C2H3CHACOCI		_	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	303
	4. Pyridylacetonitrile	(CH.CO).0	_		$A \subseteq H$ NYC(CN)=C(OH)CH (_) ⁴	259
	2-Pyridylacetonitrile CH ₂ CN	""""""""""""""""""""""""""""""""""""""	-	CH ₃ CO ₂ H	$(2-C_{5}H_{4}N)C(CN)=C(OH)CH_{3}$ (98, crude)	259
	\Diamond	(C ₂ H ₅ C) ₂ CO	LDA		C ₅ H ₉ CH(CO ₂ C ₂ H ₅)CN (79)	292
	2. Pyridylacetonitrile	(C.H.CO).O	_	CH CO H		250
	2-1 yridylacetointrine	C6H3CHXCOCI		- -	$(2-C_3H_4N)CH[COCH(C_6H_3)X]CN$ I	303
		C H NHCH CH CO CH	CHON.		1 X = Cl or Br (-)	200
	12.00	C6H3NHCH2CH2CO2CH3	1-C4HgOINa	Ру	$2 - C_5 H_4 NC(CN) = C(OH) CH_2 CH_2 NH C_6 H_5 (50)$	300
C,	$n-C_7H_{15}CN$	CICO ₂ C ₂ H ₅	NaN[Si(CH ₃) ₃] ₂	THF	$n-C_6H_{13}CH(CO_2C_2H_5)CN$ (85–87) " (49)	292 292
	C ₆ H ₃ CH ₂ CN	HCO ₂ C ₂ H ₅	NaOC ₂ H ₅	C,H,OH	$C_6H_4CH(CHO)CN$ (-)	297
		CH ₃ CO ₂ C ₂ H ₅	•		$C_6H_5CH(COCH_3)CN$ (-)	297
			NaNH ₂	NH ₃ , Et ₂ O	" (70)	54,293
		C ₂ H ₅ CO ₂ CH ₃	•		$C_6H_5CH(COC_2H_5)CN$ (74)	54
	n-C ₇ H ₁₅ CN	(C ₂ H ₅ O) ₂ CO	LDA	THF	$n-C_6H_{13}CH(CO_2C_2H_5)CN$ (76)	292
			NaN[Si(CH ₃) ₃] ₂		" (11)	292
	C ₆ H ₁₁ CH ₂ CN		LDA	•	$C_6H_{11}CH(CO_2C_2H_5)CN$ (86)	292
	C ₆ H ₅ CH ₂ CN		NaOH	NH ₃	$C_6H_5CH(CO_2C_2H_5)CN$ (50–60)	289
		2	n-C4H9LI	THF	" (79)	47
			NaOC U	C ₆ H ₆	" (—)	290
	4-CIC6H4CH2CN	(00 0 11)	Nauc ₂ ris	C ₂ H ₅ OH	$4-CIC_6H_4CH(CO_2C_2H_5)CN (77)$	291
	4-XC ₆ H ₄ CH ₂ CN	(CO ₂ C ₂ H ₅) ₂			$C_6H_5CH(COCO_2C_2H_5)CN (-)$ 4-XC_6H_4CH(COCO_2C_2H_5)CN I	305,297
	1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				I X = CI (-)	305
					I X = F (-)	305

ORGANIC REACTIONS

TABLE III. ACYLATION OF NITRILE-STABILIZED CARBANIONS WITH CARBOXYLIC

REACTIONS OF NITRILE-STABILIZED CARBANIONS

179

ESTERS, ANHYDRIDES, ACID CHLORIDES, NITRILES, AND DIALKYL CARBONATES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	C ₆ H ₃ CH ₂ CN	C₀H₃COCI C₀H₃CH₂CN	$C_{10}H_8Na$ t-C ₄ H ₉ OK	THF ≀-C₄H9OH	$C_6H_5C(COC_6H_5)_2CN$ (34) $C_6H_5CH_2C(NH_2)=C(C_6H_5)CN$ (-)	198 258
		C ₆ H ₅ CO ₂ CH ₃	NaNH2 n-C4H9Li	NH ₃ , Et ₂ O THF, 25°	$C_6H_5COCH(C_6H_5)CN$ (70) " (35–71)	54 47
		C ₆ H ₅ CO ₂ C ₂ H ₅	NaOC ₂ H ₅	C ₂ H ₅ OH	" (-)	297
	4-CIC ₆ H ₄ CH ₂ CN	C ₆ H ₅ CH ₂ CO ₂ C ₂ H ₅	NaOC ₂ H ₅	C ₂ H ₅ OH	$4-ClC_6H_4CH(COCH_2C_6H_5)CN$ (74-82)	541
		C ₆ H ₅ CO ₂ C ₂ H ₅	I-C4H9OK	DMF	$4-CIC_6H_4CH(COC_6H_5)CN (30)$	296
	C ₆ H ₅ CH ₂ CN 4-XC ₆ H ₄ CH ₂ CN	C ₆ H ₃ CH(CN)COCO ₂ C ₂ H ₅ 4-XC ₆ H ₄ CH(CN)COCO ₂ C ₂ H ₅	NaOC ₂ H ₅	C ₂ H ₅ OH	$\begin{bmatrix} C_6H_3CH(CN)CO \end{bmatrix}_2 (-) \\ \begin{bmatrix} 4 - XC_6H_4CH(CN)CO \end{bmatrix}_2 I \\ \end{bmatrix}$	305
					I X = C (-)	305
	C.H.CH.CN	4-CH-OC.H.CH(CN)COCO.C.H.	NaOC.H.	CHOH	I = I = (-) $A \subseteq H \subseteq H \subseteq H \subseteq H \subseteq H \subseteq O \subseteq C \subseteq H \subseteq (-)$	305
C	ACH OC H CH CN		CHOK	DME		206
	+enjoc6njenjen	"	LDA	THE	" (97)	301
		$(CO_{2}C_{2}H_{3})_{2}$	NaOC ₂ H ₅	C,H,OH	4-CH1OC4H4CH(COCO2C2H2)CN ()	305
	4-CH ₃ C ₆ H ₄ CH ₂ CN				$4-CH_3C_6H_4CH(COCO_2C_2H_5)CN (-)$	305
	N H CH ₂ CN	C ₆ H ₅ NHCH ₂ CH ₂ CO ₂ CH ₃	r-C4H9ONa		(62)	300
	4-CH1C4H4CH7CN	4-CH ₃ C ₄ H ₄ CH(CN)COCO ₃ C ₃ H ₄	NaOC, H.	C.H.OH	$[4-CH_3C_4H_4CH(CN)CO]_5$ (-)	305
C10	3.4-(CH,O),C,H,CH,CN	НСО,С,Н.	KOCH.	Ft.O	$34(CH_0)_C H_C(CN) = CHOH_(-)$	258
	C ₆ H ₅ CH(C ₂ H ₅)CN	CICO ₂ C ₂ H ₃	NaNH ₂ K ₂ CO ₃ , dibenzo-18- crown-6	-	$C_6H_5C(C_2H_5)(CO_2C_2H_5)CN$ (-) " (43)	289 304
	CH ₂ CN	(CH ₃ O) ₂ CO	NaOCH ₃	СН-ОН	CH(CO ₂ CH ₃)CN (60)	299
	N N				CO-CH.	
	3,4-(CH3O)2C6H3CH2CN	CH ₃ CO ₂ C ₂ H ₅	NaOC ₂ H ₅	C ₂ H ₅ OH	$3,4-(CH_3O)_2C_6H_3CH(COCH_3)CN (-)$	258
	CH,CN		LDA	THF	" (90)	301
		(C ₂ H ₅ O) ₂ CO	NaH	Et ₂ O	(50)	299
	н́ 3,4-(CH₃O)₂C₅H₃CH₂CN	(CO ₂ C ₂ H ₅) ₂	NaOC ₂ H ₅	C₂H₃OH	$CO_2C_2H_3$ 3,4-(CH_3O)_2C_6H_3CH(COCO_2C_2H_3)CN (86)	306
	CH ₂ CN	(CO ₂ C ₂ H ₃) ₂	NaH	-	OH CO ₂ C ₂ H ₃ (95)	299
TABLE III. ACYLATION OF NITRILE-STABILIZED CARBANIONS WITH CARBOXYLIC

"This product was obtained after recrystallization of the initial C,N-diacetyl adduct.

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ESTERS, ANHYDRIDES, ACID CHLORIDES, NITRILES, AND DIALKYL CARBONATES (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
-	C ₆ H ₃ C(C ₂ H ₃)(COC ₆ H ₃)CN (35)	304
	CH(COC ₆ H ₅)CN	
-	(86)	299
r-C₄H₀OH	Ĥ 3,4-(CH₃O)₂C₅H₃CH₂C(NH₂)==C[C₅H₃(OCH₅)₂-3,4]CN	(-) 258
-	$(C_6H_5)_2C(COCO_2C_2H_5)CN (-)$	835
	C(CN) ₂ CO ₂ CH ₃	
Toluene	(-)*	836
THF	$n-C_{16}H_{33}CH(CO_2C_2H_3)CN$ (81)	292

^b The initial product was treated with CICN.

180

ORGANIC REACTIONS

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

REACTIONS OF NITRILE-STABILIZED CARBANIONS

183

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C,	CH3CN	нсно	Alkali metal hydroxide, silica gel	Gas phase, 300-600°	CH ₂ =CHCN (-)	837
			C ₁₀ H.Na	THE	HO(CH ₂) ₂ CN (1-8), 2.4.6-trimethyltriazine (-)	838
		сн,сно	ı-C₄H₅Li	Et ₂ O, -78°	(CH ₃) ₃ SiOCH(CH ₃)CH ₂ CN (10)", [(CH ₃) ₃ SiOCH(CH ₃)] ₂ CHCN (70)", [(CH ₃) ₃ SiOCH(CH ₃)] ₃ CCN (5)"	19
		(CH ₃) ₂ CO	1-C4H9Li (2 eq)	$Et_2O_1 - 78^\circ$	[(CH ₃) ₂ C(OSi(CH ₃) ₃)] ₂ CHCN (47)	19
			NaN[Si(CH ₃) ₃] ₂	Et ₂ O, 20°	(CH3)2C[OSi(CH3)3]CH2CN (39, 90% pure)	21
	BrCH ₂ CN	n-C ₃ H ₇ CHO	Zn	THF or DMSO	n-C3H7CH(OH)CH2CN (30)	355
	CH ₃ CN	(C ₂ H ₅) ₂ CO	КОН	CH ₃ CN	$(C_2H_3)_2C = CHCN$ (35)	349
		•	n-C4H9Li	THF, hexane, -80°	$(C_2H_3)_2COHCH_2CN$ (68)	106
		<i>i</i> -С₃Н₅СОСН₃ ₽	$LiN(C_2H_5)_2$	HMPA. C ₆ H ₆ . – 70°	i-C ₃ H ₂ COH(CH ₃)CH ₂ CN (95) HO CH ₂ CN	326
		\square	n-C4H9Li	THF, hexane80°	(61)	106
				and comparison		
	BrCH ₂ CN	(C ₂ H ₅) ₂ CO	Zn	THF or DMSO	$(C_2H_5)_2COHCH_2CN$ (54)	355
		I-C3H7COCH3	LINKE HIN		$i-C_3H_7COH(CH_3)CH_2CN$ (42)	355
	CH ₃ CN	n-c₄H₅COCH₃ Q	LIN(C ₂ H ₃) ₂	HMPA, $C_6 H_6$, - 70°	$\frac{1}{10000000000000000000000000000000000$	326
		\bigcirc	кон	CH ₃ CN	<u>с</u> і. С п	349
					(70. 1/11 = 4.5) HO CH ₂ CN	
	BrCH ₂ CN		Zn, HgCl ₂	THF	(70)	352
	CH3CN	<i>n</i> -C ₆ H ₁₃ CHO (<i>n</i> -C ₃ H ₇) ₂ CO	LiN(C2H3)2 KOH	HMPA. C ₆ H ₆ . – 70° CH ₃ CN	$n-C_6H_{13}CHOHCH_2CN$ (70) ($n-C_3H_7$) ₂ C=CHCN	326 349
		O			CN CH2CN	
		Ô	•			349
		0			(78, 1/II = 0.98)	
		Ĩ			ſ	
		()		-	(78)	349
		C II CIIO	NoNESICH 11			
		C ₆ H ₅ CHO		Ether, 20°	$C_6H_5CH(OSI(CH_3)_3)CH_2CN$ (57)	21
		-		HMPA, C ₆ H ₆ 70°	C ₆ H ₅ CHOHCH ₂ CN (80)	326
			n-C4H9L1	THF, - 78°	(83)	325
			CLENIC HA NIC H	THF, hexane, -80°		106
			"		$C_6 n_3 CH(CH_2 CN)N(C_2 H_3)_2$ (51)	358
					$4 - C C_{h} H_{4} C H (C H_{2} C N) N (C_{2} H_{5})_{2} (33)$	308
	CICH CN		7.		$4 \cup_2 \mathbb{N} \cup_6 \mathbb{H}_4 \cup \mathbb{H}_3 \cup \mathbb{N} \cup $	300
	B-CH CN	с ₆ п ₃ спо		5	" (40)	353 351
	bienzen	2-CIC. H. CHO		FOCH		830
		3-CIC.H.CHO		E120, C6H6	2-CIC 4 CHOHCH CN (28)	830
		"	Zn. HgCl.	-	" (\$1)	839
		4-CIC.H.CHO	Zn	-	4-CIC.H.CHOHCH.CN (53)	839
					+ cicentenenienien (bb)	

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

PEACTIONS	OF	NITRILE-STARILIZED	CAPBANIONS
REACTIONS	OF	NITRILE-STADILIZED	CARDANIONS

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.	
C,	CH3CN	C4H3COCH	кон	CH,CN	$C_6H_5C(CH_3) = CHCN (15, E/Z = 4.1)$	349	-
(Contd.)		•	NaNH ₂	Et ₂ O	$C_6H_3C(OH)(CH_3)CH_2CN$ (-)	322	
		· · · · · · · · · · · · · · · · · · ·	n-C ₄ H ₉ Li	THF, hexane, -80°	" (70)	106	
		4-CH3OC6H4CHO	Cl2BN(C2H3)2, N(C2H3)3	-	$4-CH_3OC_6H_4CH(CH_2CN)N(C_2H_3)_2 (61)$	358	
	CICH ₃ CN	C ₆ H ₃ COCH ₃	Zn	-	$C_6H_3C(CH_3)=CHCN$ (44)	353	
	BrCH ₂ CN	2-CH3OC6H4CHO	Zn, HgCl ₂	THF	2-CH ₃ OC ₆ H ₄ CHOHCH ₂ CN (70)	354	
		3-CH ₃ OC ₆ H ₄ CHO		-	3-CH ₃ OC ₆ H ₄ CHOHCH ₂ CN (74)	354	
		4-CH3OC6H4CHO			4-CH ₃ OC ₆ H ₄ CHOHCH ₂ CN (62)	354	
		3,4-(CH ₃ O) ₂ C ₆ H ₃ CHO			$3,4-(CH_3O)_2C_6H_3CHOHCH_2CN$ (76)	354	
		C ₆ H ₃ COCH ₃			$C_6H_5C(CH_3) = CHCN (-), C_6H_5COH(CH_3)CH_2CN (-)$	352	
	1. C.		Zn	-	$C_6H_5C(OH)(CH_3)CH_2CN$ (68)	353,355	
	CH ₃ CN	(n-C ₄ H ₉) ₂ CO	КОН	CH ₃ CN	$(n-C_4H_9)_2C = CHCN$ (65)	349	
		3,6-Dimethyl-5-hepten-2-one	NaOH		3,4,7-Trimethyl-2,6-octadienenitrile (-) $\downarrow \sim CH_2CN \qquad \downarrow \sim OH$	348	
		T F	Base ⁴	THF	TOH I, TCH,CN II	840	
		\checkmark			γ γ		
					I:II = 98:2 (-)		
	BrCH ₂ CN	(n-C ₄ H ₉) ₂ CO	Zn, HgCl ₂	THF	$(n-C_4H_9)_2COHCH_2CN$ (27)	352	
	CH ₃ CN	C ₆ H ₅ COC ₃ H ₇ -n	кон	CH ₃ CN	$C_6H_5(C_3H_7-n)C = CHCN$ (30; $E/Z = 3.6$)	349	
		l			HO CHICN HO CHICN		
		Q			, , I, I,		
		CAHe-I			C4H9-1 C4H9-1		
			Base	THE	I:II = 75:25 (-)	840	
			Base	THE	I:II = 85:15 (-)	840	
			Base	18-Crown-6 THF	I:II = 80:20 (-)	840	
			RZnBr ⁴	THE	I:II = 67:33 (53)	841	
			RZnBr ⁴	THE HMPT	1:11 = 72:28 (52)	841	
			RLi ⁴	Pentane, Et.O	I:II = 65:35 (67)	841	
			RLi ⁴	C.H. HMPT	I:II = 65:35 (53)	841	
					A A CHICN		
		\mathcal{Q}	•		CN I, $II (80, 1/II = 3.4)$	349	
		н			HO CHICN		
		\sim	n-C.H.Li	THE	\sim	328	
		R			R		
		ĸ			I R = R' = H (-)		
					I $R = H, R' = OCH_3$ () I $R = OCH_3, R' = H$ ()		
			n-C4H9Li	THF, 0°	[(2-C ₄ H ₃ S)C(OH)C ₆ H ₃] ₂ CHCN	336	
		5 COC4N3			L CN		
		Cyclododecanone	кон	CH3CN	(45)	349	
					\smile		

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
CH3CN	N COC H	NaNH ₂	Et ₂ O	(2-C ₃ H ₄ N)COH(C ₆ H ₃)CH ₂ CN (—)	323
	in coc ₆ n ₃				
	(C ₆ H ₅) ₂ CO			$(C_6H_5)_2C(OH)CH_2CN$ I, $[(C_6H_5)_2COH]_2CHCN$ II	104
		LINH ₂	NH3	1 (63)	106
		NaNH ₂		1 (93)	106
		KNH1	5.0		200 202
		NaNH2	Et20	1 (-)	322,223
			HMPA, C6H6 10	1 (90)	320
		NaN(SI(CH ₃) ₃) ₂	$Et_2O, -60^{\circ}$	1 (60)	19
		CUL	Et ₂ O, 20 ⁵	1 (89)	21
		n-CaHgLi	THF, hexane, -80°	1 (89)	106
			THF, 0°	1 (17), 11 (53)	336
			THF, -70°	1 ()	333
	XC6H4COC6H3			XC ₆ H ₄ COH(C ₆ H ₅)CH ₂ CN I	
			THF, -70°	I X = CI-3 (-)	333
				I = F-4 (-)	333
		NaNH ₂	Et ₂ O	I X = CI-4 (-)	323
		n-C4H9Li	THF, 0°	I = CI-4 (30)	336
		NaNH ₂	Et ₂ O	I = Br-4 (-)	323
	9-Fluorenone	n-C ₄ H ₉ Li	THF, hexane, -80°	9-Cyanomethyl-9-hydroxyfluorene (47)	106
				HOMCHCN	
					336
	XC,H,COC,H3			XC,H4COH(C,H3)CH2CN	
			THF, 0°	$1 X = CH_3 - 4$ (45)	336
			THF, -70°	$I X = OCH_3 - 2 (-)$	333
				$X = OCH_3 - 3 (-)$	333
	CH.O.				
		1. C	THF, hexane 78°	I R = R' = H (80)	327,329,331,
					332,334
			•••	$\mathbf{R} = \mathbf{R}' = \mathbf{CH}_3. \text{ trans } (-)$	330
				$I R = R' = CH_3, cis (-)$	330
				I R, R' = $(CH_2)_4$, trans (-)	330
				I R, R' = $(CH_2)_4$, cis (46)	330
				$I \mathbf{R}, \mathbf{R}' = (-)$	330
	~~~			HO (83)	327
	3,4,5-(CH,O),C,H,COC.H.		THF70°	CH2CN 34.5-(CH,O),CcH,COH(CcH2)CH3CN ()	333
				$\sim$	1
		LiNH ₂	NH ₃ , ether	(51)	396
	снс*н*			CH(C ₆ H ₃ )CH ₂ CN	

186

No. of C Atoms

C₂ (Contd.)

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
-		R			CH(R)CH₂CN	
C ₂ (Conid.)	CH3CN		LiNH ₂	NH3, Et2O		396
C,	C2H3CN	нсно	Alkali metal hydroxide, silica gel	Gas phase, 300-600°	$CH_2 = C(CH_3)CN$ (-)	837
	CH ₃ CHBrCN	C ₆ H ₃ CHO	Zn	÷.	C ₆ H ₃ CHOHCH(CH ₃ )CN (82)	353
	C ₂ H ₅ CN	n-C ₆ H ₁₃ COCH ₃	кон		$n-C_6H_{13}C(CH_3)=C(CH_3)CN$ (48)	350
	An Article State	6-Methyl-5-hepten-2-one	7.	-	$(CH_3)_2C=CH(CH_2)_2C(CH_3)=C(CH_3)CN (-)$	350
	CH ₃ CHBrCN	C ₆ H ₅ COCH ₃		-	$C_6H_5COH(CH_3)CH(CH_3)CN$ (77)	353
	C ₂ H ₅ CN	C ₆ H ₅ ^{-COC} ₆ H ₅	NaNH2	F: 0	$(C_6H_5)_2$ COHCH $(CH_3)CH_2NH_2$ (39)	333
		Conscocons R		Et ₂ O	CH(R)CH(CH ₃ )CN	523,042
			LiNH ₂	NH3, ether		396
					$I R = C_6 H_5 (61)$ I R = C_4 H_3 O-2 (70)	
с.	I-C.H.CN	нсно	LiN(C ₂ H ₅ )	HMPA, C6H6, - 70°	HOCH ₂ C(CH ₃ ) ₂ CN (70)	326
		CH ₃ CHO			CH ₃ CHOHC(CH ₃ ) ₂ CN (85)	326
		n-C ₃ H ₇ CHO			n-C ₃ H ₇ CHOHC(CH ₃ ) ₂ CN (85)	326
		CH3CH=CHCHO	•	Sector Contract	$CH_3CH = CHCHOHC(CH_3)_2CN$ (57)	326
	C ₂ H ₃ CHBrCN	n-C ₃ H ₇ CHO	Zn	THF or DMSO	$n-C_3H_7CHOHCH(C_2H_5)CN$ (66)	355
		C2H3COCH3			$C_2H_5C(CH_3)OHCH(C_2H_5)CN$ (57)	355
	n-C ₃ H ₇ CN	CH COCH	LIN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆ , -70°	$(C, H) = COH(CH_3)CH(C_2H_3)CN$ (63)	326
	-C ₃ H ₇ CN	L'ST COCH			$(C_2 \Pi_3)_2 COHC(CH_3)_2 CN (88)$	320
	LC H CN	i-C.H.COCH.			$(-C_1H_2COH(CH_1)C(CH_1)CN (90))$	326
	1-0311701	° °			HO C(CH ₃ ) ₂ CN	
		$\sim$				114
		$\bigcup$			(83)	320
		C ₆ H ₅ CHO			C ₆ H ₃ CHOHC(CH ₃ ) ₂ CN (77)	326
	(CH ₃ ) ₂ CBrCN		Zn	-	C ₆ H ₅ CHOHC(CH ₃ ) ₂ CN (84)	353
	n-C ₃ H ₇ CN	$(CH_3)_2C = CH(CH_2)_2COCH_3$	KOH or n-CaH17ONa	C ₆ H ₆	$(CH_3)_2C = CH(CH_2)_2C(CH_3) = C(C_2H_5)CN$ (16)	350
	(CH ₃ ) ₂ CBrCN	C ₆ H ₃ COCH ₃	Zn	-	$C_6H_3COH(CH_3)C(CH_3)_2CN$ (46)	353
		CH ₃ S CHO	101220		CH,S CN	
	CH ₃ O(CH ₂ ) ₂ CN	CH,S	NaOCH ₃	Сн₃он	сн,	843
		Br			0. CN	
		3-Methoxy-4,5- methylenedioxybenzaldehyde	1. <b>1</b> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		CH2OCH3 (83)	346
					CH3O CH3O	
		3,5-Dimethoxy-4- methylbenzaldehyde			сн, Сн, осн, (67)	346
					OCH,	

188

c,

C.

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

REACTIONS	OF	NITRILE-STABILIZED	CARBANIONS

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C4 (Contd.)	i-C3H3CN	Cr(CO) ₃	LDA	THF, - 78°	$CH(R)CH_2C(CH_3)_2CN$ $I$ $Cr(CO)_3$ $I = H (92)$ $I = CH_3 (34)$	844
				-	$I = SC_2H_3  (62)$ $C(CH_3)_2CN  (95-100)^{c}$	844
		C ₆ H ₃ COC ₆ H ₃	LiN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆	(C ₆ H ₅ ) ₂ COHC(CH ₃ ) ₂ CN (92) ÇH(C ₆ H ₃ )CH(C ₂ H ₅ )CN	326
	n-C3H7CN		LiNH2	NH ₃ , El ₂ O	(54)	396
с,	HO ₂ C(CH ₂ ) ₃ CN	4-XC ₆ H ₄ COC ₆ H ₃		NH,	$4-XC_6H_4COH(C_6H_3)CH[(CH_2)_2CO_2H]CN $ I I X = H ()	112
		(C ₆ H ₅ ) ₂ C=NCOC ₆ H ₅			I $X = CI (-)$ (C ₆ H ₅ ) ₂ C(NHCOC ₆ H ₅ )CH[(CH ₂ ) ₂ CO ₂ H]CN (-)	112
C.	3-Thienylacetonitrile	C ₂ H ₃ COCH ₃	NaOC ₂ H ₅	C2H3OH	$\sqrt{\frac{1}{s}}$ (50)	356
	2-Thienylacetonitrile	Å	NaOC ₂ H ₅	С₂Н₃ОН	C(C ₄ H ₃ S-2)CN (-)	339
	HO ₂ C(CH ₂ ) ₄ CN	(C ₆ H ₅ ) ₂ C=NCOC ₆ H ₅	LiNH ₂	NH,	(C ₆ H ₃ ) ₂ C(NHCOC ₆ H ₃ )CH[(CH ₂ ) ₃ CO ₂ H]CN (−) HOCH ₂ , CN	112
c,	C ₆ H ₁₁ CN	нсно	LiN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆ , -70°	(73)	326
	2-Pyridylacetonitrile	СН3СНО	Piperidine	C ₆ H ₆ , CH ₃ CO ₂ H	$(2-C_{5}H_{4}N)C(CN) = CHCH_{3}  (74)$ R CN	259
	C ₆ H ₁₁ CN	CH3COCH3	LiN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆	× 1	326
		i-C3H,CHO i-C4H,COCH,			I $R = C(CH_3)_2OH$ (92) I $R = CHOHC_3H_{7}-i$ (90) I $R = COH(CH_3)C_4H_{9}-i$ (78)	326 326
	4-Pyridylacetonitrie	4-02NC6H4CHO	naoch3	CHJOH	$4-C_{5}H_{4}NC(CN) = CHC_{6}H_{4}NH_{2}-4$ (-) $4-C_{5}H_{4}NC(CN) = CHC_{6}H_{4}NO_{2}-4$ (-)	342
	3-Pyridylacetonitrile 4-Pyridylacetonitrile (CH ₂ ) ₂ CN	4-(CH ₃ ) ₂ NC ₆ H ₄ CHO "			$3-C_{3}H_{4}NC(CN) = CHC_{6}H_{4}N(CH_{3})_{2}-4$ (-) $4-C_{3}H_{4}NC(CN) = CHC_{6}H_{4}N(CH_{3})_{2}-4$ (-) $CH_{3}O_{2}CN$	342 342
	$\bigcirc$	3,5-Dimethoxy-4- thiomethoxybenzaldehyde		DMSO	CH ₃ S CH ₃ O (99)	843

190

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

193

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

# ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	(CH ₂ ) ₂ CN				CH30 CN	
C ₇ (Conid.)	Ň	3,5-Dimethoxy-4- methylbenzaldehyde	NaOCH ₃	DMSO	СН, ОСН, ОСН, (-)	346
C,	C.H.CH2CN	нсно	KOH, Fe(CO),	C2H3OH	C6H3CH(CH3)CN (67)	316
5.0		(HCHO),	NaOCH ₃	Toluene	[C ₆ H ₅ C(CN)(CH ₂ OH)] ₂ CH ₂ (65-70)	357
		CH ₃ CHO		C2H3OH, -5°	$C_6H_5C(CN) = CHCH_3(-)$	341
		C,H,CHO	•	СН,ОН	$C_6H_5C(CN) = CHC_2H_5$ (-)	343
		n-C,H,CHO			$C_6H_5C(CN) = CH(C_3H_7-n)$ (-)	343
		i-C.H.CHO		-	$C_6H_5C(CN) = CH(C_1H_7-i)$ (-)	343
		r-C.H.CHO	•		$C_4H_4C(CN) = CH(C_4H_6-n)$ (-)	343
		i-C.H.CHO			$C_{\bullet}H_{\bullet}C(CN) = CH(C_{\bullet}H_{\bullet}-i) ))$	343
		0			C(C+H+)CN	
		Ĭ		C 11 OU		120
		$\bigcirc$	NaOC ₂ H,	С2Н3ОН	(-)	339
		Ŷ			C(C ₆ H ₅ )CN	
		$\sim$			(20)	753
		0			·0 [*]	
			NaOH	-	$C_{1}H_{2}C(CN) = CH(C_{1}H_{2}O_{2})$	753
		ОСНО	Naon			155
		n-C ₃ H ₁₁ CHO	NaOCH ₃	СН,ОН	$C_6H_5C(CN) = CH(C_5H_{11}-n)$ (-)	343
		Q			C(C6H3)CN	
			NeOC H	CHOH	(90)	110
			14002113	ejiijon	(30)	557
		$\checkmark$	and the state of the state of the		$\sim$	
		C ₆ H ₃ CHO	Cl ₂ BN(C ₂ H ₅ ) ₂ , CH ₂ Cl ₂	$(C_2H_5)_3N$	$C_6H_5CH[N(C_2H_5)_2]CH(C_6H_5)CN$ (28)	358
			NaOH	C2H3OH	$C_6H_5CH=C(C_6H_5)CN$ (88-100)	308
			NaOC ₂ H ₃	•	" (83-91)	340,337
			NaOH, polyethylene glycol	Toluene	" (71)	845
			KOH, Fe(CO),	C ₂ H ₃ OH	$C_{h}H_{3}CH_{2}CH(C_{h}H_{3})CN$ (-)	316
		4-CIC, H, CHO	NaOH	•	$4-CIC_{6}H_{4}CH = C(C_{6}H_{5})CN$ (88-100)	308
		2-CIC,H,CHO			2-CIC,H4CH=C(C,H3)CN (88-100)	308
		CHO			$CH = C(CN)C_6H_5$ (01)	250 251
		ï			1	250,251
		C ₂ H ₃			С2Н,	
	3-O2NC4H4CH2CN	C,H,CHO		-	$3-O_2NC_6H_4C(CN)=CHC_6H_5$ (30)	337
	4-O,NC,H,CH,CN		NaOC ₂ H ₃		$4-O_2NC_6H_4C(CN)=CHC_6H_5$ (90)	337
			[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH	СН,ОН	" (100)	344
	4-FC, H, CH, CN		NaOCH,		$4-FC_6H_4C(CN)=CHC_6H_5(-)$	344
	4-CIC.H.CH.CN	•			$4-ClC_6H_4C(CN)=CHC_6H_5(-)$	344
	C.H.CH.CN	4-CH,OC,H,CHO	NaOH	C,H,OH	4-CH1OC4H4CH=C(C4H4)CN (88-100)	308
		4-CH,C,H,CHO			4-CH1C4H4CH=C(C4H4)CN (88-100)	308
		34-(CH-0.)C.H.CHO		-	$3.4-(CH_2O_2)C_6H_3CH=C(C_6H_6)CN$ (88-100)	308
		C.H.COC.H.	NaNH-	Xylene	$C_{+}H_{+}C(C_{+}H_{+})=C(C_{+}H_{+})CN(-)$	338
		AICH INC H CHO	NoOC H	C.H.OH	$C_{\rm c}H_{\rm c}C(CN) = CHC_{\rm c}H_{\rm c}N(CH_{\rm c})-4$ (85)	337
	10 NG U GU GN	"(Ch3/2NC6h4ChO	"		$3 - 0 - NC + C(CN) = CHC + N(CH_1) - 4$ (40)	337
	J-O2NC6H4CH2CN			-	4.0. NC. H. C(CN)=CHC. H. N(CH.). A (05)	337
	4-02NC6H4CH2CN		N-NII	Vulana		337
	C6H3CH2CN	4-CH ₃ OC ₆ H ₄ COC ₂ H ₅	NaNH ₂	C H OH	$+CH_3OC_6H_4C(C_2H_3)-C(C_6H_5)CN_{(-)}$	336
		I-C10H2CHO	NaOH	C2n3On	1-C10H7CH-C(C6H3/CH (00-100)	300

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

REACTIONS	OF	NITRILE-STABILIZED	CARBANIONS

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

Nucleophile	Electrophile	Base or Metal	<b>Reaction Conditions</b>	Product(s) and Yield(s) (%)	Refs.
C ₆ H ₃ CH ₂ CN	C ₆ H ₅ COC ₆ H ₅	i-C ₃ H ₇ MgBr	Et ₂ O	(C ₆ H ₅ ) ₂ COHCH(C ₆ H ₅ )CN (40-63)	324
	9.9'-Bifluorenylidene	[C ₆ H ₃ CH ₃ N(CH ₃ ) ₃ ]OH	DMF	CH(C ₆ H ₅ )CN (82)	397
	40-04	N-OH	DWG		00.80
C6H3CH(CH3)CN	nc=cn	[C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl, or [(C ₂ H ₃ ) ₄ N]Cl	DMSO	$C_6H_3C(CH=CH_2)(CH_3)CN$ (83)	90,89
	C₂H₃OC≡CH	N&OH, [C6H3CH2N(C2H3)3]Cl		$C_6H_5C(CH_3)(CN)C(OC_2H_5)=CH_2$ (64)	88
	Ŷ			C(C ₆ H ₄ OCH ₃ -3)CN	
3-CH3OC6H4CH2CN	$\bigcirc$	NaOC ₂ H ₅	C2H3OH	(-)	339
C ₆ H ₃ CH(CH ₃ )CN	n-C₄H₀SC≡CH	NaOH. [C ₆ H ₃ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	DMSO	$C_6H_3C(CH_3)(CH=CHSC_4H_6-n)CN$ (74)	88
	o O			C(C6H4OCH3-3)CN	
3-CH3OC6H4CH2CN	$\bigcirc$	NaOC ₂ H ₃	С³н³он	(-)	339
	C H CHO	NaOH polyethylene glycol	Tabuar		946
4-CH-OC-H-CH-CN	"	"	loluene	$C_{6}H_{5}CH = C(C_{6}H_{4}OCH_{3}-3)CN  (39)$ $C_{7}H_{7}CH = C(C_{7}H_{1}OCH_{3}+3)CN  (64)$	845
	-	NaOCH ₃	CH.OH	" (-)	344
	2,6-Cl ₂ C ₆ H ₃ CHO	NaOH, polyethylene glycol	Toluene	2.6-CI,C,H,CH=C(C,H,OCH,-4)CN (55)	845
	4-CH3OC6H4COC2H5	NaNH ₂	Xylene	$4-CH_3OC_6H_4C(C_2H_3)=C(C_6H_4OCH_3-4)CN(-)$	338
C6H3CH(C2H3)CN	НС≡СН	NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl or [(C ₂ H ₃ ) ₄ N]Cl	DMSO	$C_6H_5C(C_2H_5)CH=CH_2)CN$ (81)	89,90
2.3-(CH3O)2C6H3CH2CN	C ₆ H ₃ CHO	NaOH, polyethylene glycol	Toluene	$C_{A}H_{A}CH = C[C_{A}H_{A}(OCH_{A}), -2.3]CN$ (69)	845
3.4-(CH3O)2C6H3CH2CN		NaOH	C ₂ H ₃ OH	$3.4-(CH_3O)_2C_6H_3C(CN)=CHC_6H_5$ (88-100)	308
3.5-(CH ₃ ) ₂ C ₆ H ₃ CH ₂ CN		NaOC ₂ H ₅		$3.5-(CH_3)_2C_6H_3C(CN)=CHC_6H_5$ (80)	337
3,5,4-(CH ₃ ) ₂ (O ₂ N)C ₆ H ₂ CH ₂ CN			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$3,5,4-(CH_3)_2(O_2N)C_6H_2C(CN)=CHC_6H_5$ (90)	337
C ₆ H ₅ CH(C ₂ H ₅ )CN	C ₆ H ₅ C≡CH	NaOH, IC.H.CH.N(C.H.). ICI	DMSO	$C_6H_3C(CH=CHC_6H_3)(C_2H_3)CN$ (94)	90
3.5-(CH.)-C.H.CH.CN	4-(CH,),NC,H,CHO	NaOC,H.	-	35-(CH_)-C_H_C(CN)=CHC_H_N(CH_)-4 (80)	337
3.5.4-(CH,),(O,N)C,H,CH,CN		кон	C.H.OH	$3.5.4-(CH_3)_2(Q_1N)C_4H_2C(CN)=CHC_4H_2N(CH_3)_2-4$ (90)	337
			-1	3,4(CH ₃ O) ₂ C ₆ H ₃ CN	
				X	
3.4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	I-Benzyl-4-piperidone	NaOCH3	сн,он	( _N ) (-)	347
CN	CH2CHO			CH ₂ C ₄ H ₃ CN	
сн,о	(°FX°)	NaNH ₂	NH,		846

194

No. of C Atoms

Cs (Conid.)

C,

C10

----

C13 C14

# ORGANIC REACTIONS

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base or Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Conid.)	CH,O CN	сн,со, Сно	NaNH ₂	NH3, THF	СН,3СО2 (61)	174,175
C ₁₁	C ₆ H ₃ CH(C ₃ H ₇ -i)CN	НС≡СН	NaOH,	DMSO	$C_{6}H_{3}C(C_{3}H_{7}-i)(CH=CH_{2})CN$ (82)	90
	С ₆ H ₃ CH(C ₃ H ₃ -#)CN С ₆ H ₃ CH(C ₃ H ₇ -#)CN	n-C₄H₀SC≡CH  C ₆ H₃C≡CH	[C6H3CH2N(C2H3)3JCI " " "		$C_{6}H_{5}C(C_{3}H_{7}-n)(CH=CHSC_{4}H_{9}-n)CN  (68)$ $C_{6}H_{5}C(C_{3}H_{7}-i)(CH=CHSC_{4}H_{9}-n)CN  (74)$ $C_{6}H_{5}C(C_{3}H_{7}-i)(CH=CHC_{6}H_{5})CN  (83)$ $CN$	88 88 90
	ArCH ₂ CN	1-Benzyl-4-piperidone			C.H.CH.N.	
			NaOCH3	"	$I  Ar = 2.3.4 - (CH_3O)_3C_6H_2  (-)$ $I  Ar = 3.4.5 - (CH_3O)_3C_6H_2  (71)$	347 347
C12	CH2CN	ХС*Н⁴СНО			C(CN)=CHC ₆ H ₄ X	
			кон " " NaOCH,		$1 X = H ()$ $1 X = 2-C1 (-)$ $1 X = 3-C1 (-)$ $1 X = 4-C1 (-)$ $1 X = 4-OCH_{3} ()$ $1 X = 2-NO_{2} (-)$ $1 X = 3-NO_{2} (-)$	345 345 345 345 345 345 345 345
	I-C ₁₀ H ₇ CH ₂ CN	ХС*Н⁴СНО	NaOH KOH "	С ₂ н,он	$1  X = 4 - N(CH_3)_2  (-)$ $XC_8 H_4 CH == C(C_{10}H_7 - 1)CN  I$ 1  X = H  (88 - 100) 1  X = CI - 2  (-) $1  X = NO_2 - 2  (-)$ $1  X = NO_2 - 3  (-)$ 1  X = CI - 3  (-) 1  X = CI - 4  (-)	345 308 847 847 847 847 847
	CH(CN)CH2CH2N	С&Н3СНО	NaNH2	()	S C(CN)(CHOHC ₆ H ₃ )CH ₂ CH ₂ N O (-)	568
	C ₆ H ₃ CH(C ₄ H ₉ - <i>n</i> )CN I-C ₁₀ H ₇ CH ₂ CN	C ₆ H ₃ C≡CH 4-CH ₃ OC ₆ H ₄ CHO 3,4-(CH ₂ O ₂ )C ₆ H ₃ CHO 4-(CH ₃ ) ₂ NC ₆ H ₄ CHO 3-O ₂ NC ₆ H ₄ COC ₃ H ₇ - <i>i</i>	" KOH " NaNH2	NH ₃ C ₂ H ₃ OH " Xylene	$C_{6}H_{5}C(C_{4}H_{9}\cdot n)(CH=CHC_{6}H_{5})CN  (96)$ $4-CH_{3}OC_{6}H_{4}CH=C(C_{10}H_{7}-1)CN  (-)$ $3.4-(CH_{2}O_{2})C_{6}H_{3}CH=C(C_{10}H_{7}-1)CN  (-)$ $4-(CH_{3})_{2}NC_{6}H_{4}CH=C(C_{10}H_{7}-1)CN  (-)$ $3-O_{2}NC_{6}H_{4}C(C_{3}H_{7}-i)=C(C_{10}H_{7}-1)CN  (-)$	89 847 847 847 338
	4-r-C ₄ H ₉ C ₆ H ₄ CH ₂ CN	CH OCCH,	-		$CH O C(CH_3) = C(CN)C_6H_4C_4H_{9} - t - 4 $ (-)	338
C13	C ₆ H ₅ CH(C ₅ H ₁₁ -n)CN	НС≡СН	NaOH, [C4H4CH3N(C3H4)3]Cl	DMSO	$C_{6}H_{5}C(C_{5}H_{11}-n)(CH=CH_{2})CN$ (88)	90
C14	(C ₆ H ₄ ) ₂ CHCN (n-C ₄ H ₉ ) ₃ SnCH ₂ CN (C ₆ H ₅ ) ₂ CHCN	(HCHO), CCI,CHO C₂H,OC≡CH	[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl	Py DMSO	$(C_6H_5)_2C(CH_2OH)CN$ (94) $(n-C_4H_9)_3SnOCH(CCl_3)CH_2CN$ (-) $(C_6H_5)_2C(CN)C(OC_2H_5)=CH_2$ (77)	848 849 88
		n-C₄H ₉ SC≡CH			$(C_6H_5)_2C(CH=CHSC_4H_6-n)CN$ (55)	88

## TABLE IV. ADDITION OF NITRILE-STABILIZED CARBANIONS TO

No. of C Atoms	Nucleophile	Electrophile	Base
C.4	(n-C ₄ H ₉ ) ₃ SnCH ₂ CN	C ₆ F ₃ CHO	-
(Conid.)	C ₆ H ₅ CH(CN)(CH ₂ ) ₂ N(C ₂ H ₅ ) ₂	C ₆ H ₅ C≡CH	NaOH, [C6H3CH2N(C2H3)3]Cl
C15	C ₆ H ₃ CH ₂ CH(C ₆ H ₃ )CN 4-ClC ₆ H ₄ CH ₂ CH(C ₆ H ₄ Cl-4)CN	(HCHO), "	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH
	C ₆ H ₃ CH(CH ₂ C ₆ H ₃ )CN	C₂H₃OC≡CH	NaOH, [C6H3CH2N(C2H3)3]Cl
	(Z)-C ₆ H ₅ CH ₂ OCH ₂ CH=C(CH ₃ )(CH ₂ ) ₃ CN	(CH ₃ ) ₃ CCHO	LDA
	C ₆ H ₃ CH(CH ₂ C ₆ H ₃ )CN	n-C₄H ₉ SC≡CH	NaOH, [C6H3CH2N(C2H3)3]Cl
		C₄H₃C≡CH "	" NaNH2
C16	(4-CH ₃ C ₆ H ₄ ) ₂ CHCN C ₆ H ₃ CH(CH ₃ )CH(C ₆ H ₅ )CN	(HCHO), n-C₄H₀SC≡CH	[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl
C,,	4-CH3OC6H4CH2CH(C6H4OCH3-4)CN	(HCHO),	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH
Cis	(1-C10H7)CH(C6H3)CN	•	
Cia	(I-C.,H.)CH.CH(C.H.)CN		
-14	(I-C10H7)CH(CH2C6H5)CN		
C,,	(CAHA),CHCH(CAHA)CN	(HCHO).	•
		C₂H₃OC≡CH	NaOH, [C4H4CH3N(C3H4)3]Cl
		n-C₄H₀SC≡CH	

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

199

# ALDEHYDES, KETONES, IMINES, ALKENES, AND ALKYNES (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
-	$(n-C_4H_9)_3$ SnOCH $(C_6F_3)$ CH ₂ CN (-)	849
DMSO	$C_6H_5C(CH=CHC_6H_3)(CN)(CH_2)_2N(C_2H_3)_2$ (79)	90
Ру	C ₆ H ₃ CH ₂ C(C ₆ H ₃ )(CH ₂ OH)CN (93)	848
	4-CIC6H4CH2C(C6H4CI-4)(CH2OH)CN (44)	848
DMSO	$C_6H_5C(CH_2C_6H_5)(CN)C(OC_2H_5)=CH_2$ (74)	88
	$(Z)-C_{A}H_{C}CH_{O}CH_{C}CH_{C}(CH_{A})(CH_{A})_{O}CHOHC_{A}H_{O}-t$ (-)	542
•	$C_6H_3C(CH_2C_6H_3)(CH=CHSC_4H_9-n)CN$ (78)	88
-	$C_{A}H_{A}C(CH_{A}C_{A}H_{A})(CH=CHC_{A}H_{A})CN$ (98)	90
C ₆ H ₆	· (-)	89
Py	(4-CH ₃ C ₆ H ₄ ) ₂ C(CH ₂ OH)CN (92)	848
DMSO	$C_6H_5C(CH(CH_3)C_6H_5)(CH=CHSC_4H_9-n)CN$ (64)	88
Py	4-CH,OC,H,CH,C(C,H,OCH,-4)(CH,OH)CN (45)	848
	1-C10H7C(C4H4)(CH2OH)CN (95)	848
**	1-C.,H-CH-C(C.H.)(CH-OH)CN (95)	848
•	1-C10H+C(CH2C6H3)(CH2OH)CN (87)	848
	(C,H,)2CHC(C,H,)(CH2OH)CN (91)	848
DMSO	$C_6H_5C[CH(C_6H_5)_2][C(OC_2H_5)=CH_2]CN$ (100)	88
	$C_{h}H_{s}C[CH(C_{h}H_{s})_{2}](CH=CHSC_{4}H_{g-n})CN$ (96)	88

" The initial product was treated with (CH₃)₃SiCl. " The initial product was reduced with LiAlH₄.

⁶ The initial product was quenched with ceric ammonium nitrate. ⁴ The specific base was not identified.

No. of C Atoms	Acceptor	Nucleophile	Electrophile	Metal	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C3	CH2=CHCN	CH3I	CH ₃ COCH ₃	Zn	CH ₃ CN	C ₂ H ₅ CH(CN)C(CH ₃ ) ₂ OH (52)	124
		i-C ₃ H ₇ I				i-C4H9CH(CN)C(CH3)2OH (98)	124
			C ₂ H ₅ CHO			$i-C_4H_9CH(CN)CH(C_2H_5)OH$ (65)	124
		n-C ₃ H ₇ I	CH ₃ COCH ₃			$n-C_4H_9CH(CN)C(CH_3)_2OH$ (63)	124
		i-C ₃ H ₇ I	(CH ₃ CO) ₂ O			$i-C_4H_9C(CN) = C(CH_3)O_2CCH_3$ (81)	124
			$\overset{\bullet}{\bigcirc}$				124
			Ĭ				
		i-C ₃ H ₇ I	$\bigcirc$			(99)	124
			C ₆ H ₅ CHO	**	*	i-C4H9CH(CN)CH(OH)C6H3 (94)	124
		C.H.I	CH,COCH,			C ₆ H ₁₁ CH ₂ CH(CN)C(CH ₁ ) ₂ OH (95)	124
		C ₆ H ₅ CH ₂ Br	"		*	C6H3(CH2)2CH(CN)C(CH3)2OH (46)	124
						но	
		CH ₃ CO(CH ₂ ) ₃ I				(42)	124
C.	CH₂=C(CH₃)CN CH₃CH=CHCN	i-C3H7I	CH3COCH3 C6H3CHO	Zn "	CH3CN	i-C4H9C(CH3)(CN)C(CH3)2OH (72) i-C3H7CH(CH3)CH(CN)CH(C6H5)OH	124 124
	CH,=C(CH ₃ )CN	-				(95) i-C₄H₅C(CH₅)(CN)CH(C₅H₅)OH (73)	124
C C	YCH CH=C(CN)CH 7	RMaBr	R'X			YC.H.CHRC(CN)(R)C.H.Z. I	
015 017	Y = H, Z = H	$R = CH_{1}$	$R'X = CH_1$		Et.O	I (88)	850
	Y = H, Z = H	$R = CH_{1}$	$R'X = C_1H_1I$			I (22)	850
	Y = H, Z = H	$R = CH_1$	$R'X = C_1H_2Br_n$			I (threo, 20; erythro, 72)	850
	Y = H, Z = H	$R = CH_1$	$R'X = C_{s}H_{1}, Br-n$			I (18)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{CH}_3$	$\mathbf{R'X} = \mathbf{C_5H_{11}Br}$			I (18)	850
	Y = H, Z = H	$R = C_2 H_3$	$R'X = CH_3I$		**	1 (threo, -; erythro, 63)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R'X = C_2H_3I$			I (-)	522
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R'X = C_3H_7Br-n$		**	I (20)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_3$	$R'X = C_sH_{11}Br-n$		**	I (20)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_3$	$\mathbf{R'X} = \mathbf{C_sH_{11}Br}$		**	I (90)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7 \cdot \mathbf{n}$	$R'X = CH_3I$		*	I (50)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7 \cdot \mathbf{i}$	$R'X = CH_3I$			I (18)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_3 \mathbf{H}_7 - \mathbf{n}$	$R'X = C_3H_7Br-n$		"	I (threo, 63; erythro, 23)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_4 \mathbf{H}_9 \cdot \mathbf{n}$	$R'X = CH_3I$			I (13)	850
	Y = H, Z = H	$\mathbf{R} = \mathbf{C}_{5}\mathbf{H}_{11} \cdot \mathbf{n}$	$R'X = CH_3I$			I (13)	850
	$Y = OCH_3 - 4, Z = H$	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R'X = C_2H_5I$			I (—)	851,850
	$Y = OCH_3-4, Z = OCH_3-4$	$R = C_2 H_5$	$\mathbf{R'X} = \mathbf{C}_2\mathbf{H}_5$			1 (-)	851
	$Y = OCH_3 - 4, Z = H$	$R = C_2 H_5$	$R'X = C_3H_7Br-n$			1 (47)	850
	$Y = H, Z = OCH_3-4$	$\mathbf{R} = \mathbf{C}_2 \mathbf{H}_5$	$R'X = C_2H_5I$			1 (62)	850
	$Y = OCH_{2} - 4, Z = OCH_{2} - 4$	$\mathbf{R} = \mathbf{CH}_{\mathbf{n}}$	$R'X = CH_1$ (50)		**	I (50)	850

TABLE V. TANDEM CONJUGATE ADDITION-ALKYLATION OF  $\alpha,\beta$ -Unsaturated Nitriles with Carbonyl Compounds

203

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C2	CH,CN	Ć}°	n-C4H9Li	THF, -80°	CH ₂ CN (-)	369
		Ů		•	HO CH ₂ CN (-)	369
		Å			HO CH ₂ CN ()	369
		Å	÷.	35	HO CH ₂ CN (-)	369
		(E)-C ₆ H ₅ CH=CHSO ₂ CH ₃	LDA	THF	$O_{S} C_{s}H_{s} $ (51)"	391
		C ₆ H ₃ CH=CHCOCH ₃	n-C4H9Li or	THF, -80°	O [™] O C ₆ H₃CH=CHCOH(CH₃)CH₂CN (−)	369
		$CH_3CH=CHCOC_6H_5$ $(C_6H_5)_2C=CHNO_2$ $C_6H_5CH=CHCOC_6H_5$	KF n-C ₄ H ₉ Li or KN[Si(CH ₃ ) ₃ ] ₂	" СН ₃ СN ТНF, —80°	$CH_3CH=CHCOH(C_6H_3)CH_2CN (-)$ $O_2NCH_2C(C_6H_3)_2CH_2CN (45)$ $C_6H_3CH=CHCOH(C_6H_3)CH_2CN (-)$	369 392 369
					CH ₃ O, L, C ₆ H ₃	
с,	C₂H₃CN	(E)-C ₆ H ₃ CH=CHSO ₂ CH ₃	LDA	THF	(76)* 0 ¹¹ 0	391
C,	i-C3H2CN				O C ₆ H ₅ (80) ^s	391
	n-C₃H,CN	-		-	$O = \bigcup_{s}^{C_2H_s} O = \bigcup_{s}^{C_6H_s} (89)^s$	391
C,	2-Thienylacetonitrile	CH ₂ =CHCO ₂ CH ₃	(CH ₃ ) ₄ NOH	CH₃OH, ≀-C₄H₅OH	0 2-C4H3SC[(CH2)2CO2CH3]2CN (73) NC CHOHCH=CHCH3	387,852
с,	C ₆ H ₁₁ CN	сн,сн=снсно	LiN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆	(70)	326
	2-Pyridylacetonitrile	CH ₂ =CHCO ₂ C ₂ H ₃	Na		$(2-C_3H_4N)CH(CN)CH_3CH_2CO_3C_3H_3$ (-)	377
	C ₆ H ₁₁ CN	С₅Н₅СН=СНСНО	LiN(C ₂ H ₅ ) ₂	HMPA, C ₆ H ₆	(65)	326

## ORGANIC REACTIONS

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

# STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
c,	XC6H4CH2CN	CH2=CHCO2CH3			XC6H4C[(CH2)2CO2CH3]2CN 1	
			(CH ₃ ) ₄ NOH	CH ₃ OH, r-C ₄ H ₉ OH	I = H (70)	387
				-	I = Br-4 (70)	387
					I = CI-3 (64)	387
					$1  X = Cl_2 - 3.4  (70)$	387
	C U CU CN				$I = Cl_2 - 2,4$ (67)	387
	C6H3CH2CN	(E)-CHJCH=CHCHO			C ₆ H ₃ CH=CHCHOHCH(C ₆ H ₃ )CN I. C ₆ H ₃ CH(CN)CH(CH ₃ )CH ₂ CHO II	1.1.1
			n-C4HgLI	1:4 HMPA:THF70°. 30 min	I:II = 65:35 (75)	365
	3-CIC ₆ H ₄ CH ₂ CN	•		THF 70°. 30 min. and 0 to - 30°. 2-3 hr	$1:\Pi = 0:100  (60)$ $CH_{3}CH=CHCHOHCH(C_{6}H_{4}CI-3)CN  I.$	367
				1.4 UNADA THE 705 30 -in	$3-CiC_6 n_4 C n_1 C n_2 C n_$	365
				1:4 HMPA: 1HP 70. 30 min	1:11 = 55:65 (55) 1:11 = 0:100 (70)	367
	C ₆ H ₃ CH ₂ CN	CH ₂ =C(CH ₃ )CHO		$1 \text{ Hr}$ , $= 70^{\circ}$ . 30 min. and 0 to $= 30^{\circ}$ . 2-3 m	$CH_{2} = C(CH_{3})CHOHCH(C_{6}H_{3})CN $	507
				1:4 HMPA THE - 70° 30 min	1:11 = 25:75 (80)	365
				THE - 70° 30 min and 0 to - 30° 2-3 hr	I:II = 0:100 (75)	367
	3-CIC ₆ H ₄ CH ₂ CN				CH ₂ =C(CH ₃ )CHOHCH(C ₆ H ₄ CI-3)CN 1, 3-CIC ₆ H ₄ CH(CN)CH ₂ CH(CH ₃ )CHO II	
				1:4 HMPA:THF 70°. 30 min	I:II = 15:85 (80)	365
	and a start of the	and the second second second	•	THF, - 70°, 30 min and 0 to - 30°, 2-3 hr	1:11 = 0:100 (75)	367
	ArCH ₂ CN	CH ₂ =CHCO ₂ CH ₃			ArC(CN)[(CH ₂ ) ₂ CO ₂ CH ₃ ] ₂ I	Server 1
			[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	CH ₃ OH, <i>t</i> -C ₄ H ₉ OH	$I  Ar = C_6 H_4 Cl-4  (71)$	383,387
					$1 Ar = C_6 H_4 F_4 (72)$	383,387
	C ₆ H ₃ CH ₂ CN	(CH ₃ ) ₂ C=CHCHO			1 Ar = $C_6H_4Cl-2$ (73) (CH ₃ ) ₂ C=CHCHOHCH( $C_6H_3$ )CN I, C H CH(CN)(CH) CH CHO II	387
			n-C.H-Li	1.4 HMPA .THE -70° 30 min	$I \cdot II = 75.25$ (90)	365
				THF 70°. 30 min. and 0 to - 30°. 2-3 hr	I:II = 0:100 (65)	367
		0			0	0.0
		ĭ			ĭ	
		$\bigcirc$		THE 70% 10	(90)	360
				1 Hr, - /0', 10 min	CH(C _A H ₃ )CN	303
		CH ₂ =CHCO ₂ C ₂ H ₃	LDA	THF, -78°	C ₆ H ₅ CH(CN)(CH ₂ ) ₂ CO ₂ C ₂ H ₅ (50)	386,389
		CH ₃ CH=CHCO ₂ CH ₃	Cu2O. C6H11NC		C6H5CH(CN)CH(CH3)CH2CO2CH3 (53)	381
		$CH_2 = C(CH_3)CO_2CH_3$	LDA	THF, -78°	C ₆ H ₃ CH(CN)CH ₂ CH(CH ₃ )CO ₂ CH ₃ (40)	389
	3-CIC ₆ H ₄ CH ₂ CN	(CH ₃ ) ₂ C=CHCHO		THF, -70°, 30 min, and 0 to -30°, 2-3 hr	3-CIC ₆ H ₄ CH(CN)C(CH ₃ ) ₂ CH ₂ CHO (85)	367
	C ₆ H ₅ CH ₂ CN	(CH ₃ ) ₂ C=CHCOCH ₃	n-C4H9Li	THF or DME, -70°	$(CH_3)_2C=CHC(CH_3)OHCH(CN)C_6H_5$ 1, $(CH_3)_2C[CH(CN)C_6H_5]CH_2COCH_3$ 11 $1\cdot 11 = 5\cdot 95$ (-)	376
				THE or DME 7nCl - 70°	1.11 = 95.55 (-)	
		0		The of Date, Energy, and	0	
		Ĭ			HO CH(C ₆ H ₃ )CN	
		$\bigcirc$				
			- C H 11			
			n-C4HgLl	THF, -70°, 1 min	1:11 = 55:45 (65)	369,370
				THF 70°, 15 min	1:11 = 70:30 (70) 1:11 = 100:0 (90)	309,370
		CH,CH=CHCO.C.H.	LDA	THE _ 78°	$C_{H} = 100.0  (50)$	380 386
	3-CIC ₆ H ₄ CH ₂ CN	(CH ₃ ) ₂ C=CHCOCH ₃		1ar, - /0	(CH ₃ ) ₂ C=CHCOH(CH ₃ )CH(CN)C ₆ H ₄ Cl-3 I, (CH ₃ ) ₂ C[CH(CN)C ₆ H ₄ Cl-3]CH ₂ COCH ₃ II	569,560

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

# REACTIONS OF NITRILE-STABILIZED CARBANIONS

# STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C. (Contd.)	3-CIC ₆ H ₄ CH ₂ CN	(CH ₃ ) ₂ C=CHCOCH ₃	n-C ₄ H ₉ Li	THF or DME 70° THF or DME. ZnCl ₂ 70°	1:11 = 5:95 (-) 1:11 = 95:5 (-)	376 376
		Ŷ			O HO CH(C ₆ H ₄ Cl-3)CN	
		$\bigcirc$		THF90°	$\bigcirc CH(C_6H_4CI-3)CN \qquad I, \qquad II$	853
				1:4 HMPA:THF	(>95)	854
	C6H,CH2CN				$\begin{array}{c} & & \\ O \\ & & \\ CH(C_6H_3)CN \\ & \\ CH(C_6H_3)CN \\ & \\ \end{array}$	
			-	THF 90°. 2 min	1:11 = 35:65 (70)	369.370
		-		THF 70°. 15 min THF 60°. 2 hr	1:11 = 70:30 (75) 1:11 = 100:0 (95)	369,853 369
		Å.				
		$\bigcup$		THF, -90°		853
		CH ₃ CH=CHCH=NC ₄ H ₉ - <i>i</i> O		1:4 HMPA: THF, 70°	$C_6H_3CH(CN)CH(CH_3)CH_2CHO$ (80)" $Q$ HO CH(C_6H_3)CN	367
		$\diamond$		THF, -30°		853
		<u>e</u>			$\begin{array}{ccc} I:II = 95:5 & (70) \\ O & HO & CH(C_6H_5)CN \\ \downarrow & & & \\ \end{array}$	
		$\downarrow$		THF, -90°		853
	3-CIC ₆ H₄CH₂CN	CH₃CH=CHCH=NC₄H₅-≀ Ω		1:4 HMPA:THF, -70°	1:11 = 95:5 (95) 3-CIC ₆ H ₄ CH(CN)CH(CH ₃ )CH ₂ CHO (70) ⁴ O HO CH(C ₆ H ₄ CI-3)CN	367
		$\Diamond$		THF, - 50°		853
	C ₆ H ₃ CH ₂ CN	С₀Н₃СН=СНСНО			$I:II = 95:5 (50)$ $C_6H_5CH = CHCHOHCH(C_6H_5)CN I.$	
				1:4 HMPA:THF 70°. 30 min	I:II = 65:35 (75)	365
		" (CH₃)₂C=CHCH=NC₄H₀न	-	THF, -70°, 30 min, and 0 to -30°, 2-3 hr 1:4 HMPA:THF, -70°	1:11 = 0:100 (60) C ₉ H ₃ CH(CN)C(CH ₃ ) ₂ CH ₂ CHO (10) ⁴	367 367

206

# REACTIONS OF NITRILE-STABILIZED CARBANIONS

209

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
1		Ŷ			O HO CH(C ₆ H ₅ )CN	
C ₈ (Contd.)	C ₆ H ₅ CH ₂ CN	$\Omega$	n-C4H9Li	THF, -70°	, с с п	853
					$CH(C_6H_3)CN$ I:II = 95:5 (95)	
				THF, - 70°, 15 min	I (95)	369,370
		CO ₂ C ₂ H ₃	LDA	THF,78°	(73) CO ₂ C ₂ H ₄	386,389
	3-CIC ₆ H ₄ CH ₂ CN	C ₆ H ₃ CH=CHCHO			$C_{6}H_{3}CH = CHCHOHCH(C_{6}H_{4}CI-3)CN I,$	
		•	n-C ₄ H ₉ Li	THF, -70°. 30 min, and 0 to -30°, 2-3 hr	1:11 = 0:100 (70)	367
			NaOCH,	СН3ОН	11 (10)	367
	C ₆ H ₃ CH ₂ CN	C ₆ H ₃ CH=CHCOCH ₃	n-C4H9LI	THF, - 70°, 1 min	$C_6H_5CH = CHCOH(CH_3)CH(C_6H_5)CN $ I, $C_6H_5CH(CN)CH(C_6H_5)CH_2COCH_3 $ II $I = 78 \cdot 22 $ (70)	369,370
				THF 70°. 15 min	I:II = 28:72 (85)	369.370
				THF, -60°, 2 hr	I:II = 0:100 (90)	369,370
			NaOCH ₃	СН ₃ ОН, 0°	11 (70: $erythro: threo = 65:35$ )	373
		CH ₃ CH=CHCOC ₆ H ₃	n-C4H9L1	THF, -90°, 2 min	$C_6H_3CH(CN)CH(CH_3)CH_2COC_6H_5$ (85)	369,370
		Ĭ.				
				THF, - 70°		853
		Y				
		C4R9-1			$C_4H_9-t$ $C_4H_9-t$ 1:11 = 80:20 (80)	
		$\sim$			$\sim$	
					0 1(60), C ₆ H ₄ CH(CN)	u
		0 • •	1.1		CH(C ₆ H ₅ )CN OH	
				THF, HMPA,	1:II = 2:3 (60)	855
				THF, -45°	1:II = 2:3 (90)	855
				THF, HMPA, -40° THF, -45°	I (60) I (90)	855
					Ŷ	
	4-XC-H-CH-CN	C.H.CH=CHCO.CH.			$\wedge$ .	
	- neginterileri				C.H. C.H.	
			NaOCH,		NC C ₆ H ₄ X-4	944
				Toluene	X = H (43) I X = CI (53)	856
		$ \land \land \land$			$\sim$	
	C ₆ H ₃ CH ₂ CN	odd		THF30°	0 (90)	855
			I DA		ĊH(C ₆ H ₃ )CN	204 200
				THF, – 78°	$C_6H_5CH(CN)CH(C_6H_5)CH_2CO_2C_2H_5$ (74)	380,389
		Set D	- 5 <b>4</b> . s		CH(C ₆ H ₃ )CN	201 202
		со,с,н.			CO.C.H. (73)	386,389
					cojejnij	

# ORGANIC REACTIONS

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

211

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C. (Contd.)	4-XC6H4CH2CN	4-CH ₃ C ₆ H ₄ CH=CHCO ₂ CH ₃				
			NaOCH ₃	Toluene	NC $C_6H_4X-4$ I X = H (35)	856
					I  X = CI  (39)	856
	C ₆ H ₅ CH ₂ CN	C ₆ H ₃ CH=CHCH=NC ₄ H ₉ -r	n-C4HgLi	1:4 HMPA:THF, -70°	C ₆ H ₃ CH(CN)CH(C ₆ H ₃ )CH ₂ CHO (75) ^a	367
		á já			CHICH.YCN	
		CO.C.H.	LDA	THF, 0°	(76)	386
		XC ₆ H ₄ CH=C(COCH ₃ )CO ₂ C ₂ H ₃	NaOCH3	СН³он	$C_6H_3CH(CN)CH(C_6H_4X)CH(COCH_3)CO_2C_2H_5$ I I X = H (88)	384
			*		$I = OCH_{3}-4$ (68)	
					$I X = N(CH_3)_2 - 4 (82)$	
					$I = NO_2 - 4$ (80) $I = X = NO_2 - 4$ (85)	
		COCH=CHCO2H			COCH2CH(CO2H)CH(C6H4CI-4)CO2H	
	4-CIC ₆ H ₄ CH ₂ CN	Û	NaOH	Aq C2H3OH	(75)	857
	C ₆ H ₅ CH ₂ CN 4-CIC ₆ H ₄ CH ₂ CN C ₆ H ₅ CH ₂ CN	C ₆ H ₃ CH=CHCOC ₆ H ₃ 4-C ₆ H ₃ C ₆ H ₄ COCH=CHCO ₂ H C ₆ H ₃ CO(CH=CH) ₂ C ₆ H ₃	n-C4H0Li NaOH NaOC2H3	ТНF, —90° Аq С₂Н₃ОН С,Н,ОН	$C_{6}H_{3}CH(CN)CH(C_{6}H_{3})CH_{2}COC_{6}H_{3}$ (90) $4-C_{6}H_{3}C_{6}H_{4}COCH_{2}CH(CO_{2}H)CH(C_{6}H_{4}CI-4)CO_{2}H$ (79) $C_{6}H_{3}COCH_{3}CH(CH=CHC_{6}H_{3})CH(CN)C_{6}H_{3}$ (-)	369,370 857 858
		4-CIC ₆ H ₄ CO(CH=CH) ₂ C ₆ H ₅			4-CIC ₆ H ₄ COCH ₂ CH(CH=CHC ₆ H ₅ )CH(CN)C ₆ H ₅ (-)	858
c	4-CIC ₆ H ₄ CH ₂ CN 2 (2 Puridul)buturonitrile	$C_{4}H_{3}CH=C(C_{6}H_{3})COC_{6}H_{3}$	Na		$4-CIC_6H_4CH(CN)CH(C_6H_5)CH(C_6H_5)COC_6H_5$ (-)	859
C.	4-CH3OC6H4CH2CN	(E)-CH ₃ CH=CHCHO	14a	- Electron and the	2-C ₃ H ₄ NC(C ₂ H ₃ )(CN)(CH ₂ ) ₂ CN (55) CH ₃ CH=CHCHOHCH(C ₆ H ₄ OCH ₃ -4)CN I, 4-CH ₂ OC ₂ H ₂ CH(CN)CH(CH ₂ )CH ₂ CHO II	377
			n-C4H9Li	1:4 HMPA: THF, -70°, 30 min	I:II = 55:45 (75)	365,366
				THF. – 78°	I:II = 100:0 (80)	366
		CH2=C(CH3)CHO		THF, - 70°, 30 min and 0 to - 30°, 2-3 hr	1: II = 0: 100 (60) $CH_2 = C(CH_3)CHOHCH(C_6H_4OCH_3-4)CN$ I, $4-CH_2OC_2H_2CH(CN)CH_2CH(CH_3)CHO II$	367
			•	1:4 HMPA:THF, -70°, 30 min	$I:II = 60:40 \ (\geq 95)$	365
		au - auga au		THF, -70°, 30 min, and 0 to -30°, 2-3 hr	I:II = 0:100 (70)	367
	XC ₆ H ₄ CH ₂ CN	CH ₂ =CHCO ₂ CH ₃	(CH.) NOH		$XC_6H_4C(CH_2CH_2CO_2CH_3)_2CN$ I	202 207
			"	""	$X = OCH_{3}-4$ (70)	387
			[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH	r-C₄H₀OH	$I X = OCH_3 - 3$ (68)	379,852
					3-CH ₃ OC ₆ H ₄ CH(CH ₂ CH ₂ CO ₂ C ₄ H ₉ - <i>t</i> )CN ()	
			(CH.) NOH		$I = OCH_{3}-2$ (57)	382
				CH ₃ OH, I-C ₄ H ₉ OH	$1 X = CH_{3} - 4 (73)$ $1 X = CH_{3} - 3 (66)$	387,852
			•	0.4	$I X = CH_{2} (37)$	387.852
					1 X = Cl-2 (73)	852
					I = CI-3 (64)	852
					I = Br-4 (70)	852
					$1 X = Cl_2 - 3.4$ (70)	852
			**		$I = Cl_2 - 2.4$ (66)	852
					$1 X = t - C_4 H_9 - 4 $ (70)	852

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

213

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
Co (Conid.)	4-CH₃OC₅H₄CH₂CN	(CH ₃ ) ₂ C=CHCHO	n-C4H9Li	1:4 HMPA:THF, - 70°, 30 min THF, - 70°, 30 min, and 0 to - 30°, 2-3 hr	$4-CH_3OC_6H_4CH(CN)CHOHCH=C(CH_3)_2$ I, $4-CH_3OC_6H_4CH(CN)C(CH_3)_2CH_2CHO$ II $1:11 = >95:5$ ( $\geq 95$ ) 1:11 = 0:100 (80)	365 367
	O CH2CN	CH ₂ =CHCO ₂ C ₂ H ₅	[C ₆ H ₃ CH ₃ N(CH ₃ ) ₃ ]OH	CH3CN	(100)	860
	2-(2-Pyridyl)butyronitrile C ₆ H ₃ CH(CH ₃ )CN 4-CH ₃ OC ₆ H ₄ CH ₂ CN	CH ₂ =CHCO ₂ C ₂ H ₃ HOCH ₂ C(CH ₃ ) ₂ COCH ₃ (CH ₃ ) ₂ C=CHCOCH ₃	Na KOCH3	÷.	$2-C_{3}H_{4}NC(C_{2}H_{3})(CN)(CH_{2})_{2}CO_{2}C_{2}H_{3}$ (-) $C_{6}H_{3}C(CH_{3})(CN)(CH_{2})_{2}COC_{3}H_{7}-i$ (8) (CH_{3})_{2}C=CHCOH(CH_{3})CH(CN)C_{6}H_{4}OCH_{3}-4 I,	377 253
		0	n-C₄H₀Li "	THF or DME, $-70^{\circ}$ THF or DME, $2nCl_2$ , $-70^{\circ}$	$(CH_{3/2}C[CH(CN)C_6H_4OCH_3-4]CH_2COCH_3$ II I:II = 5:95 (-) I:II = 95:5 (-)	376 376
		Ŏ		THF, -40°	$HO CH(C_{6}H_{4}OCH_{3}-4)CN$	853
		Q	-	1:4 THF:HMPA	1:11 = 95:5 (80) 1 (>95) 0	854
		$\bigcup$		THF, 90°	$(CH(C_6H_4OCH_3-4)CN)$ $HO CH(C_6H_4OCH_3-4)$ $HO HI$	853
		Contractor 147		1:4 HMPA:THF	1:11 = 90:10 (95) 1 (>95)	854
		CH ₃ CH=CHCH=NC ₄ H ₉ -r O		1:4 HMPA:THF, -70°	4-CH ₃ OC ₆ H ₄ CH(CN)CH(CH ₃ )CH ₂ CHO (90) ⁴	367
		$\Diamond$	-	THF20°	I. CH(C ₆ H ₄ OCH ₃ -4)CN HO_CH(C ₆ H ₄ OCH ₃ -4)CN	853
		Q			I:II = 95:5 (80)	
		$\Diamond$		THF40°	I. CH(C,H4OCH3-4)CN HO CH(C,H4OCH3-4)CN	861
					II I:II = 95:5 (80)	

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

215

STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS (Continued)

-	in the second					
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	4-CH ₃ OC ₆ H ₄ CH ₂ CN	C ₆ H ₃ CH=CHCHO				1.11
(Conta.)			- 6 11 11	1:4 HMPA .THE _ 705 30 min	$1 \cdot 11 = 70 \cdot 30$ (85)	365
			n-C4HgLI	$THF = 78^{\circ}$	I:II = 100:0 (80)	366
				THE $-70^{\circ}$ 30 min and 0 to $-30^{\circ}$ 2-3 hr	I:II = 0:100 (70)	367
			-	THE HMPA -78°	1:11 = 1:1 (80)	862
				THF 78°	1 (80)	862
		(CH ₃ ) ₂ C=CHCH=NC ₄ H ₉ -r		1:4 HMPA:THF, -70°	4-CH3OC6H4CH(CN)C(CH3)2CH2CHO (30)4	367
		O II			Î	
		$\cdot$		THE - 70°	$\cap$	853
		XX		1111, -70	CH(C ₆ H ₄ OCH ₃ -4)CN	
					HO CH(C6H4OCH3-4)CN	
					П	
					1:11 = 95:5 (80)	
				1:4 HMPA:THF	I (>95)	854
		$\bigcirc$			CH(C ₆ H ₄ OCH ₃ -2)CN	
	2-CH ₃ OC ₆ H ₄ CH ₂ CN		LDA	THF	(76) CO.C.H.	386,389
	C ₆ H ₅ CH(CH ₃ )CN	(E)-C ₆ H ₃ CH=CHCOCH ₃	NaOCH ₃	СН ₃ ОН. 0°	C ₆ H ₅ C(CH ₃ )(CN)CH(C ₆ H ₃ )CH ₂ COCH ₃ erythro (83), threo (17)	374
	4-CH3OC6H4CH2CN	0	n-C ₄ H ₉ Li	THF, - 30°	0 (90) CH(C.H.OCH4)CN	355
	2-CH,OC₄H₄CH,CN	5°	NaH	THF. – 45°	$(C_{6}H_{4}X)CN$ $I_{1}X = OCH_{1}-2  (73)$	389
		CO2C2H3			CO ₂ C ₂ H,	
	3-CH3OC6H4CH2CN			and the second and the	$1 X = OCH_{3} - 3$ (68)	389
	4-CH3OC6H4CH2CN	C ₆ H ₅ CH=CHCH=NC ₄ H ₉ -1	n-C4H9Li	1:4 HMPA:THF, -70°	4-CH ₃ OC ₆ H ₄ CH(CN)CH(C ₆ H ₃ )CH ₂ CHO (70)"	367
Cio	$C_6H_5C(CN) = CHCH_3$	CH ₂ =CHCN	[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH	Aq r-C4H,OH	$C_6H_3C(CH=CH_2)(CN)(CH_2)_2CN$ (-)	341
	3-CH3OC6H4CH(CH3)CN			Dioxane	3-CH ₃ OC ₆ H ₄ C(CH ₃ )(CN)(CH ₂ ) ₂ CN (58)	378
	C ₆ D ₅ CD(C ₂ H ₅ )CN	CH ₂ =CHCO ₂ CH ₃			$C_6D_5C(C_2H_5)(CN)(CH_2)_2CO_2CH_3$ (80)	385
	3-CH3OC6H4CH(CH3)CN			CH ₃ OH or dioxane	$3-CH_3OC_6H_4C(CH_3)(CN)(CH_2)_2CO_2CH_3$ (63)	380,378
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN		(CH ₃ ) ₄ NOH	CH ₃ OH, I-C ₄ H ₉ OH	$3.4-(CH_3O)_2C_6H_3C(CN)[(CH_2)_2CO_2CH_3]_2$ (65)	387
	2,5-(CH3O)2C6H3CH2CN	chjch=chc0 ₂ c ₂ h,	LDA	1HF, - 78°	2,5-(CH ₃ O) ₂ C ₆ H ₃ CH(CN)CH(CH ₃ )CH ₂ CO ₂ C ₂ H ₃ (89) CN	389
	CH2CN				$\sim$	
	<b>N</b>	$[(CH_3)_2N=CHC(X)=CHN(CH_3)_2]ClO_4$	NaOCH ₃		N I, X = H (-)	359
	н				H N(CH ₃ ) ₂	
			ē. —		$I X = OCH_{3} (-)$ $CH[C_{4}H_{3}(OCH_{3})_{3}-2.5]CN$	359
		$\frown$	1.04	THF - 78°	(52)	180 941
	2,5-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	COJCJH,	LUA		Со,с,н,	367,603

# REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	CH ₃ O ^{CN}	CH,CO ² H	NaNH2	NH3, -78°	CH ₃ CO ² H CN (-)	395
					$R = \frac{1}{NO_2} O(CH_3) O(CH_3)$	175 20
		<u>.</u>			$I = O(CO(H_{3/2}C) - (12))$ $I = O(CO(H_{3/2}C) - (12))$ $O = O(CO(H_{3/2}C) - (12))$ $O = O(CO(H_{3/2}C) - (12))$	393,394
	2,5-(CH3O)2C6H3CH2CN	CO ₂ C ₂ H,	LDA	THF, -20°	$CH[C_6H_3(OCH_3)_2-2,5]CN$ $CO_2C_2H_5$ $CN$ (64)	386,389
	CH ₂ CN I H	[(CH ₃ ) ₂ N=CHC(C ₆ H ₅ )=CHN(CH ₃ ) ₂ ]ClO ₄	NaOCH,		(-)	359
	3,4-(CH3O)2C6H3CH2CN	OC4H9-1	кн	Toluene	CH ₃ O CH ₃ O CH ₃ O (-)	864
C ₁₁	3-CH3OC6H4CH(C2H3)CN	CH ₂ =CHCO ₂ CH ₃	[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH	Dioxane	CN 3-CH ₃ OC ₆ H ₄ C(C ₂ H ₅ )(CN)(CH ₂ ) ₂ CO ₂ CH ₃ (34) OH	378
	CO ₂ C ₂ H ₅	RC≡CCO₂C₂H₃	NaH	DME	$CO_2C_2H_5$ $R$ $I$ $R$ $I$ $R = H$ $(80)$	865
C12	4-t-C ₄ H ₉ C ₆ H ₄ CH ₂ CN 1-Naphthylacetonitrile	CH ₂ =CHCO ₂ CH ₃	(СН ₃ ), NOH [С, H, CH ₂ N(CH ₃ ),]OH	СН3ОН, 1-С4Н9ОН 1-С4Н9ОН	$I R = CH_{3} (95)$ $I R = CO_{2}C_{2}H_{3} (30)$ $4 - (-C_{4}H_{9}C_{6}H_{4}C(CN)[(CH_{2})_{2}CO_{2}CH_{3}]_{2} (59)$ $I - C_{10}H_{7}C(CN)[(CH_{2})_{2}CO_{2}CH_{3}]_{2} (-)$ $NC \qquad \qquad X$	387 383
		[(CH ₃ ) ₂ N=CHC(X)=CHN(CH ₃ ) ₂ ]ClO ₄	NaOCH ₃	10 <del>.0</del>	$I, X = H (-)$ $N(CH_3)_2$	359
		~		-	$\mathbf{I}, \mathbf{X} = \mathbf{C}_{\mathbf{g}}\mathbf{H}_{\mathbf{g}}  (-)$	359
	2-Naphthylacetonitrile	°~~	LDA	THF, 78°	$O \rightarrow O \rightarrow CH(C_{10}H_{7}-2)CN \qquad (65)$	389

TABLE VI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF NITRILE-

# STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	OCH3 CH2CN	Ŝ€	N-W		CN OCH,	100
С,,		со,с,н,	Nan	THF, -45°		389
C14	(C ₆ H ₅ ) ₂ CHCN ÇN	(CH ₃ ) ₂ C(Br)CO ₂ C ₂ H ₃ BrCH ₂ CH(CH ₃ )CO ₂ C ₂ H ₃ (CH ₃ ) ₂ CBrCO ₂ C ₂ H ₃	NaOC2H3 NaNH2 NaOC2H3	С₂Н₃ОН С₅Н₅ С₂Н₃ОН	(C ₆ H ₃ ) ₂ C(CN)CH ₂ CH(CH ₃ )CO ₂ C ₂ H ₃ (85-90 crude) " () (C ₆ H ₃ ) ₂ C(CN)CH ₂ CH(CH ₃ )CO ₂ C ₂ H ₃ (90) X CN	252 252 7 <del>94</del>
		сн₃о₂сс≡ссо₂сн,	NaH	C ₆ H ₆	$CH_{3}O_{2}C CO_{2}CH_{3} (28)$	52
					$I = CH_3O_2C - CO_2CH_3  (4),$ $CH_3O_2C - CO_2CH_3  (5)$	
	осн,	$(NC)_2C=C(CN)_2$	•	THF	$I X = \frac{1}{\sqrt{2}} $ $I X = CH(CN)_2 (11)$ $O O OCH_3$	52
	CH ₃ O	Со,с,н,	КН	THF, -20°	$CH(R)CN \qquad I, R = OCH_3 $	389,390
		÷	NaH	-	$I, R = \begin{pmatrix} OCH_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	866
C15	OCH, CH ₂ CH ₂ CN	4	÷	THF, 0°	$L, R = \begin{pmatrix} OCH_3 \\ OCH_3 \\ (94) \end{pmatrix}$	388
	сн,о осн,	•	КН	THF, - 20°	CH,O OCH, OCH, I, R = (72)	389,390
					сн,о осн,	
	9-Phenanthrylacetonitrile	[(CH ₃ ) ₂ N=CHC(C ₆ H ₅ )=CHN(CH ₃ ) ₂ ]ClO ₄	NaOCH3		$(CH_3)_2N$ $(-)$ $(CH_3)_2N$ $(-)$	359

"The initial product was hydrolyzed with aqueous acid.

220

REACTIONS OF NITRILE-STABILIZED CARBANIONS

		TABLE VII. INTRAMOLECULAR REACTIONS OF	NITRILE-STABILIZED CARB	ANIONS		
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂	CH3CN	Br(CH ₂ ) _s Br	NaN[Si(CH ₃ ) ₃ ] ₂	Et ₂ O, -60°	(CH ₂ ), CHCN, (CH ₂ ), C(CH ₂ ),	105
		Cl(CH ₂ ) ₅ Cl	NaNH ₂		$NC(CH_2)_7CN$ (low), $C_6H_{11}CN$ (high)	209
		[BrCH ₂ Si(CH ₃ ) ₂ ] ₂ O	NaN[Si(CH3)3]2	$C_6H_6$ , toluene	$(CH_3)_2$ Si $(CH_3)_2$ (-)	218
C3	C₂H₃CN		-	•	(CH ₃ ) ₂ Si OSi(CH ₃ ) ₂ (-)	218
C.	CI(CH ₂ ) ₃ CN	-	NaH	НМРА		187
		÷	NaNH ₂		~~~ " (54)	187
		2	NaNH ₂	NH3	" (-) " (53)	185 543
C,	CH ₂ CH(CH ₂ ) ₂ CN		LDA	9	CN (59)	220
	CI(CH ₂ ) ₄ CN	-	$LiN(C_2H_5)_2$	НМРА	CN (62)	193
	Д ^{сы}		ı-C₄H9OK	t-C₄H9OH	CN (8-11)	129Ь
	CI CH ₃ CCI(NO ₂ )(CH ₂ ) ₂ CN	-	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	CH3CN	$O_2 N \xrightarrow{CN} (71)$ CH ₃ (71)	867
C ₆	CN CH ₃	÷.	KNH2	NH3, DME		222,221
	CI(CH ₂ ) ₃ CH(CH ₃ )CN	-	LiN(C ₂ H ₅ ) ₂	НМРА	CN CH ₃ (61)	193
	C ₂ H ₃ CCl(NO ₂ )(CH ₂ ) ₂ CN		50% aq NaOH, [C6H3CH2N(C2H5)3]Cl	CH3CN	$O_2 N \xrightarrow{C_2 H_5} CN$ (74)	867
	NC(CH ₂ ) ₄ CN	-	КН	THF	CN (79-88)	868

222

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 

C(CH₃)₂OH

		TABLE VII. INTRAMOLECULAR REACTIONS OF	NITRILE-STABILIZED C	CARBANIONS (Continu	ued)
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
C ₆ (Contd.)	2-Furylacetonitrile	Br(CH ₂ ) ₃ Br	NaH	DMSO	CN C ₄ H ₃ O-2 (58)
	2-Thienylacetonitrile	-	•		CN C ₄ H ₃ S-2 (58)
C,	H. CH3 OL CN		NaNH ₂	THF, 40°	
	CH ₃ , H O H			۳	
	CI(CH₂)₃CH(C₂H₅)CN		LiN(C ₂ H ₃ ) ₂	НМРА	$CH_{3} III,$ $OH$ $I + II:III + IV = 28:72 (90)$ $CN$ $CN$ $CV$ $CV$ $CV$ $CV$ $CV$ $CV$ $CV$ $CV$
	CN CH,		NaN[Si(CH ₃ ) ₃ ] ₂	C ₆ H ₆	(63-67)
	NC(CH ₂ ) ₅ CN		кн	THF	(83)
C.	OT CN		KNH2	NH3, DME	
	OCH3 CN		÷		H.J.OH H.JCN (77)
	°₹CN	-	KN[Si(CH ₃ ) ₃ ] ₂	C ₆ H ₆ , 80°	CN C(CH ₃ ) ₂ OH (70)

CN

ÓН

CN

ÓН

OH

(-)

II,

CH,

-CH₃ IV

CN II

223

Refs.

204

204

224

224

193

225

868

221

223,221

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

225

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	CI(CH ₂ ) ₃ CH(C ₃ H ₇ -i)CN	-	LiN(C ₂ H ₃ ) ₂	нмра	$CN = C_3H_{7}-i  (88)$	193
	CI(CH ₂ ) ₄ CH(C ₂ H ₅ )CN				C ₂ H ₅ CN (90)	193
	C ₆ H ₃ CH ₂ CN	Br(CH ₂ ) ₂ Br			C ₆ H ₅ CN (71)	186,102,184
		CI(CH ₂ ) ₂ Cl	n-C ₄ H ₉ Li	THF, 25°	" (65) CN	47,46
		CH ₃ OCH ₂ Cl	NaNH ₂	Et ₂ O	NC $- C_6H_5$ (-)	869
	XC ₆ H ₄ CH ₂ CN	Br(CH ₂ ) ₃ Br	NaH	DMSO	CN C6H4X I	204
					I  X = H  (58) $I  X = Cl-2  (75)$ $I  X = Cl-3  (53)$ $I  X = Cl-4  (78)$ $I  X = Br-2  (60)$ $I  X = F-2  (40)$ $I  X = Cl-26  (65)$	
		Cl(CH ₂ ) ₃ Cl	n-C4H9Li 50% aq NaOH, [C6H3CH2N(C2H5)3]Cl	THF, 25°	$ \begin{array}{c} I & X = C_{12} (20) \\ I & X = H \\ I & X = H \\ \end{array} (26) $	47 70
	C ₆ H ₃ CH ₂ CN	CH ₃ CH(Br)CH ₂ Br	NaNH ₂	Toluene, 110°	$\begin{array}{c} & & C_{6}H_{5} \\ CH_{3} & CN \\ I:II = 60:40 \\ C_{6}H_{5} \end{array} \begin{array}{c} I, \\ CH_{3} & CH_{3} \\ CH_{3} \\ C_{6}H_{5} \end{array} \begin{array}{c} II \\ CH_{3} \\ C_{6}H_{5} \end{array} \begin{array}{c} II \\ CH_{3} \\ C_{6}H_{5} \end{array} $	190
		Br(CH ₂ ) ₄ Br	NaOH	-	(77)	199,197
		( • ) ·	КОН	DMF	" (68)	203
			DMSO	NaH	" (72)	204
			C10H8Na NaNH2	THF Toluene	" (63) " (70)	198 196
		CH ₃ CHBr(CH ₂ ) ₂ Br		C ₆ H ₆ , 80°	$\Box_{CH_3}^{CN} C_6H_5 \qquad \Box_{CH_3}^{CN} C_6H_5 \qquad \Box_{CH_3}^{CH_3} C_{H_3}$ I:II = 86:14 (72)	190
		CI(CH ₂ ) ₄ Cl	50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl	-	CN (-)	71,870

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophiles	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	C ₆ H ₅ CH ₂ CN	CI(CH ₂ ) ₄ Cl	NaNH ₂	Toluene	$C_{c_6H_5}^{CN}$ (79)	195
(Conta.)		Br(CH ₂ ) ₄ Br	50% aq NaOH, [CeH2CH2N(C2H2)]Cl		" (88)	70,85
			n-C ₄ H ₉ Li	THF, 25°	" (47)	47
			NaOH	DMSO	" (82) C ₆ H ₅ , CN	871,872
		CI(CH ₂ ) ₂ O(CH ₂ ) ₂ CI	NaOH. (C2H3)4NOH	n-C ₃ H ₇ OH	(68)	201,202
			50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl		о " (−) С₅Н₅, сN	70
		CI(CH ₂ ) ₂ S(CH ₂ ) ₂ CI	NaNH ₂		(40) S	211
	4-ClC ₆ H₄CH₂CN	CI(CH ₂ ) ₄ CI		Toluene	4-CIC ₆ H ₄ CN (-)	195
		Br(CH ₂ ) ₄ Br	NaOH	-	" () CaHa CN	200
	C ₆ H ₃ CH ₂ CN	Br(CH ₂ ) ₅ Br	NaH	DMSO	(54)	204
		-	NaOH	-	" (30) C ₆ H ₅ CN	199
			50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	$(-), C_{g}H_{3}CH(CN)(CH_{2})_{3}Br$	(—) 70
			ℓ-C₄H9OK	t-C4H9OH	(59)	208,210
		-	NaNH2	Et ₂ O	" (62) CH CH-	873
		CH ₃ CHBr(CH ₂ ) ₃ Br			$H = C_{a}H_{a} L = H = C_{a}H_{a} L$	
			NaH	Et-O	I:II = 96:4 (-)	205
			NaNH ₂	C6H6	I:II = 92:8 (-)	205
			1-С₄Н₄ОК КОН	t-C₄H₃OH Aq DMSO	I:II = 89:11 (-) I:II = 51:49 (-) 2-FC ₆ H ₄ CN	205 205
	2-FC ₆ H ₄ CH ₂ CN	CH ₃ N[(CH ₂ ) ₂ Cl] ₂	NaH	DMF	$\bigcap_{\mathbf{N}}$ (-)	217,874

# ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₈ (Contd.)	2,5-F ₂ C ₆ H ₃ CH ₂ CN	CH ₃ N[(CH ₂ ) ₂ Cl] ₂	NaH	DMSO	2,5-F ₂ C ₆ H ₃ CN	217
	2,4-F(CI)C6H3CH2CN				2,4-F(Cl)C ₆ H ₃ CN N (-)	217
	C ₆ H ₃ CH ₂ CN	C ₂ H ₅ O ₂ CN[(CH ₂ ) ₂ Br] ₂		DMF	C ₆ H ₅ CN (78)	875
		C ₆ H ₅ SO ₂ O(CH ₂ ) ₂ Cl	NaNH ₂	Et ₂ O	$C_{6}H_{5} \xrightarrow{CO_{2}C_{2}H_{5}} C_{6}H_{5} \xrightarrow{CN} (54)$	184
		n-C4H9N[(CH2)2Cl]2	Aq NaOH, [C6H3CH2N(C2H3)3]Cl		(30)	214
		CH ₂ =C[OP(O)(OCH ₃ ) ₂ ]CO ₂ CH ₃	NaH	DMF	C ₆ H ₅ -7 NC CO ₂ CH ₃	247
		CH ₂ Cl N(CH ₂ ) ₂ Cl	NaNH ₂	Toluene	$\bigcup_{N}^{H} C_{6}H_{5}$	212
		4-CH ₃ C ₆ H ₄ SO ₃ (CH ₂ ) ₂ Cl		Et ₂ O	$C_6H_5$ $\times$ (60)	184
		4-CH ₃ C ₆ H ₄ SO ₃ (CH ₂ ) ₂ Br			" (54)	184
		(E)-C ₆ H ₃ CH=CHSO ₂ CH ₃	LDA	THF	$C_6H_5$ , CN $C_6H_5$ (68)	391
		$CH_2 = C(CO_2C_2H_5)OP(O)(OC_2H_5)_2$	NaH	DMSO	$C_6H_5$ NC $C_2C_2H_5$ (40) $C_6H_5$ CN	246,245
		C ₆ H ₃ CH ₂ N[(CH ₂ ) ₂ Cl] ₂	NaOH, [C6H3CH2N(C2H3)3]Cl	-	(-)	870

UKUANIC KE	AC	пс	JNS
------------	----	----	-----

REACTIONS OF NITRILE-STABILIZED CARBANIONS

		TABLE VII. INTRAMOLECULAR REACTIONS OF	NITRILE-STABILIZED CARE	ANIONS (Continu	ued)	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C _s (Contd.)	4-XC ₆ H₄CH₂CN	4-CH ₃ C ₆ H ₄ SO ₂ N[(CH ₂ ) ₂ Cl] ₂			ACH.C.H.SO.N C ₆ H ₄ X-4 I	
(001111.)			NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl		I = H (68) I X = Cl (72)	876,870 215
	C ₆ H ₃ CH ₂ CN	(E)-C ₆ H ₅ CH=CHSO ₂ C ₆ H ₅	LDA	THF	C ₆ H ₅ . CN (83)	391
		(E)-4-CH ₃ C ₆ H ₄ SO ₃ (CH ₂ ) ₄ CH=CHCO ₂ CH ₃	ŀ-C₄H9OK	t-C₄H9OH	CH ₂ CO ₂ CH ₃ CN (-)	229
					С ^с ен, 0	
	4-XC ₆ H ₄ CH ₂ CN	(4-YC ₆ H ₄ CH=CH) ₂ CO			4-YC ₆ H ₄ C ₆ H ₄ Y-4	
			NaOH "	сн,он	NC $C_6H_4X-4$ I X = H, Y = H (85) I X = Cl, Y = H (83)	856 856
					I $X = NO_2, Y = H$ (85) I $X = NO_2, Y = CH_3$ (88)	856 856
			-	-	I $X = Cl, Y = CH_3$ (85) I $X = NO_2, Y = OCH_3$ (78) O	856 856
		4-CH ₃ OC ₆ H ₄ CH=CHCOCH=CH ₆ H ₃			C ₆ H ₃ C ₆ H ₄ OCH ₃ -4	
					NC C6H4X-4	954
			( <b>•</b> )		X = C1 (80) $I X = NO_2 (80)$ CN	856
C,	Cl(CH ₂ ) ₃ CH(C ₄ H ₉ -i)CN	-	LiN(C ₂ H ₅ ) ₂	НМРА	C ₄ H ₉ -i (76)	193
	CI(CH ₂ ) ₄ CH(C ₃ H ₇ -i)CN		-		^{1-C} ₃ H ₇ CN (99)	193
	ol CN		NaN[Si(CH ₃ ) ₃ ] ₂	C ₆ H ₆ , 80°	CN CH ₃ (58)	222

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₉ (Contd.)	C Co	-	KNH2	NH3	OH (64)	221
	2-CIC ₆ H ₄ (CH ₂ ) ₂ CN	-			NC ⁻ CN (66)	877,273
		_	NaNH ₂		" (65)	274
	4-CH ₃ OC ₆ H ₄ CH ₂ CN	Br(CH ₂ ) ₂ Br	LiNH ₂	DME	4-CH ₃ OC ₆ H ₄ CN (75)	189
	3,4-(CH ₂ O ₂ )C ₆ H ₃ CH ₂ CN			"	3,4-(CH ₂ O ₂ )C ₆ H ₃ CN (65-75)	188
	3-CH ₃ OC ₆ H ₄ CH ₂ CN	Br(CH ₂ ) ₃ Br	NaNH ₂	C÷0	CN $C_6H_4OCH_3-3 (-)$	191
		Br(CH ₂ ) ₄ Br	NaOH	-	3-CH ₃ OC ₆ H ₄ CN (83)	199
		•	NaNH ₂	-		191
	4-CH ₃ C ₆ H ₄ CH ₂ CN				4-CH3C6H4 CN (-)	191
		CICH ) CI	Q		4-CH ₃ OC ₆ H ₄ CN	
	4-CH3OC6H4CH2CN			Toluene	()	195
		Br(CH ₂ ) ₄ Br Br(CH ₂ ) ₄ Br ⁴	№ОН КОН, [C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]OH	HO(CH ₂ ) ₂ OH	" (76) " (89)	199 201,202
	3,4-(CH2O2)C6H3CH2CN		NaNH ₂	-	3,4-(CH ₂ O ₂ )C ₆ H ₃ CN (-)	191
	CH ₂ CN CO ₂ CH ₃	(Z)-CICH ₂ CH=CHCH ₂ Cl	NaH	THF	N CO ₂ CH ₃ CN (42),	207
					CN CH=CH ₂ ("Small amount")	

232

234

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 

(-)

CH2CH=CHCI

(-)

CN

ÓН

CN

CAH9-n

ЮH

II

I:II = 1.6:1 (65)

HÓ

		TABLE VII. INTRAMOLECULAR REACTIONS OF	NITRILE-STABILIZED CAJ	BANIONS (Contin	ued)
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
					3-CH3OC6H4 CN
C ₉ (Conid.)	3-CH3OC6H4CH2CN	Br(CH ₂ ) ₅ Br	NaNH ₂	-	$\bigcirc$ $(\rightarrow)$
					4-CH3C6H4 CN
	4-CH ₃ C ₆ H ₄ CH ₂ CN	Br(CH ₂ ) ₅ Br ^a	40% NaOH, (CH ₃ ) ₄ NI	C ₆ H ₆	(53)
					3,4-(CH2O2)C6H3 CN
	3,4-(CH ₂ O ₂ )C ₆ H ₃ CH ₂ CN	Br(CH ₂ ) ₅ Br	NaNH ₂		(-)
					3-CH3OC6H4 CN
	3-CH3OC6H4CH2CN	$(E)-CICH=CHCH_2N[(CH_2)_2CI]_2$		Toluene	$\bigcirc$
					H ^{CH} 2CH ₂ CH 3-CH ₃ OC ₆ H ₄ CN
		4-CH ₃ C ₆ H ₄ SO ₂ N[(CH ₂ ) ₂ Cl] ₂	-		Ç,
					SO2C4H4CH3-
	3-CH₃OC₀H₄CH₂CN	(E)-4-CH ₃ C ₆ H ₃ SO ₂ O(CH ₂ ) ₄ CH=CHCO ₂ CH ₃	ı-C₄H₅OK	ı-C₄H₃OH	C ₆ H ₄ OCH ₃ -3 (-) CH ₂ CO ₂ CH ₃
c	n-C4H9. H	1.24			C4H9-n "
C10	H. CN				OH ÇN
					C4H9-n III, (
			NaNH ₂	THF, 40°	OH I + II:III + IV = $36:64$ (88)
					N L
	°Z~~~~CN	-	KNH2	NH3, DME	

235

Refs.

191

201,20

191

878

229

224

221

11,

-C4H9-n IV

Cl⁻ (67) 213

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 

		TREE TH. INTRAMOLECULAR REACTIONS OF	THIRDE-DIADICIZE	D CARDANIONS (COMMA	(1)	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	COCN		KNH2	NH3, DME	(80) OH	221
	n-C ₃ H ₁₁ , H O H			*	$ \begin{array}{c} \begin{array}{c} CN \\ C_{3}H_{11}-n \end{array} \\ C_{1} \\ CN \end{array} \\ \begin{array}{c} CN \\ CN \\ CN \end{array} \\ \begin{array}{c} CN \\ CN \\ CN \end{array} \\ \begin{array}{c} CN \\ CN $	-л П,
			NaNH ₂	THF, 40°	$\begin{array}{c} & & C_{5}H_{11}-n & III, \\ & & OH & OH \\ I + II:III + IV = 35:65  (88) \end{array}$	I ₁₁ -n IV 224
	CoCN		KNH2	NH3, DME	CN (75)	223
	NCOSO2CH3		ı-C₄H9OK	DMSO, 45°		219
	2,4-Br(CH ₃ O)C ₆ H ₃ (CH ₂ ) ₂ CN		NaNH ₂	NH3	CH30 CN (55)	877,275
	2-CIC ₆ H ₄ (CH ₂ ) ₃ CN		KNH2	-	CN (68)	273
	3-CIC ₆ H ₄ (CH ₂ ) ₃ CN		-	-	" (49)	273
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN	Cl(CH ₂ ) ₂ Cl	LDA	HMPA, THF	$3,4-(CH_3O)_2C_6H_3$ (86)	107
		Br(CH ₂ ) ₂ Br	n-C4H9Li	THF, -76°	" (24)	102
	2,6-(CH ₃ O) ₂ C ₆ H ₃ SCH ₂ CN	Cl(CH ₂ ) ₂ Cl	LDA	THF, HMPA, – 78°	$2,6-(CH_3O)_2C_6H_3S$ (90)	879
	2,4-(CH ₃ ) ₂ C ₆ H ₃ CH ₂ CN	Br(CH ₂ ) ₄ Br	NaNH ₂	-	2,4-(CH ₃ ) ₂ C ₆ H ₃ CN (-)	191
	2,5-(CH ₃ ) ₂ C ₆ H ₃ CH ₂ CN	5.e		-	2,5-(CH ₃ ) ₂ C ₆ H ₃ CN (-)	191

ORGANIC REACTIONS

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀ (Contd.)	3,4-(CH ₃ ) ₂ C ₆ H ₃ CH ₂ CN	Br(CH ₂ ) ₄ Cl		- 0 <del>5</del> (	3,4-(CH ₃ ) ₂ C ₆ H ₃ CN (-)	191
	3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CN		-	-	3,4-(CH ₃ O) ₂ C ₆ H ₃ CN (-)	191
		Br(CH ₂ ) ₅ Br	NaH	Toluene	3,4-(CH ₃ O) ₂ C ₆ H ₃ CN (-)	880
	2-(CH3OCH2O)C6H4CH2CN	C ₆ H ₅ CH ₂ N[(CH ₂ ) ₂ Cl] ₂		DMSO	2-CH ₃ OCH ₂ OC ₆ H ₄ CN (80-90)	688
C ₁₁	i-C4H9CH(OSO2CH3)C(CH3)2CH2CN	_	-	DMF, 20°	(86, E:Z = 40:60)	559
	CH2CHCH2CH(C6H3)CN	÷	LDA	-	$C_6H_5$ CN $C_6H_5$ CN $C_6H_5$ CN $C_1$ (94)	220
			CH ₃ MgI, MgBr ₂	+		220
	0 Cn Cn		LDA	-	n-C ₆ H ₁₃ CN (43)	220
		÷.	CH₃MgI (2 eq)	÷.,	CN C ₆ H ₁₃ -n (40)	220
	QeCN	-	KNH2	NH3, DME		221
	OT_CN		-	-	I:II = 1:1 (-) OH (ca. 80)	222

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

		TABLE VII. INTRAMOLECULAR REACTIONS OF	NITRILE-STABILIZED CARBANIONS (Continued)			
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	CH ₃ CH ₃ OCN	<u> </u>	NaNH ₂	NH3	CH ₃ (-)	275
	n-C ₆ H ₁₃ CH[(CH ₂ ) ₃ Cl]CN	-	LiN(C ₂ H ₅ ) ₂	НМРА	$CN = C_6H_{13}-n  (56)$	193
	Co		KNH2	NH ₃ , DME	(ca. 70)	223
	2-ClC ₆ H ₄ (CH ₂ ) ₄ CN			NH3	HO 1-Cyanotetralin (61) i-C-H- CN	273
	CI(CH ₂ ) ₆ CH(C ₃ H ₇ -i)CN	-	LiN(C ₂ H ₅ ) ₂	нмра	(46)	193
	CH ₂ CN OCH ₂ OCH ₃	C ₆ H ₃ CH ₂ N[(CH ₂ ) ₂ Cl] ₂	NaH	DMSO	CN OCH ₂ OCH ₃ OCH ₃ (65-75)	688
C12	2-ClC ₆ H ₄ (CH ₂ ) ₅ CN		KNH2	NH3	(49)	273
	C CN		•	NH3, DME	(80)	221
	1-Naphthylacetonitrile	Br(CH ₂ ) ₂ Br	50% aq NaOH, [C6H3CH2N(C2H5)3]Cl	-	$1-C_{10}H_{7}$ (67)	97
	Cyanomethylferrocene	Cl(CH ₂ ) ₂ Cl	n-C ₄ H ₉ Li	Et ₂ O	$Fc X^{CN}$ (53)	49
	1-Naphthylacetonitrile	Br(CH ₂ ) ₃ Br	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	$C^{N}_{C_{10}H_{7}-1} (21)$	97
		Br(CH ₂ ) ₄ Br	•	-	1-C ₁₀ H ₇ CN (80)	97



C14

**ORGANIC REACTIONS** 

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 



TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

REACTIONS OF NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄	4-CH ₃ C ₆ H ₄ SO ₃ CH ₂ C(CH ₃ ) ₂ (CH ₂ ) ₂ CN	4	NaNH ₂	NH3	CN (11)	882
(comu.)	001		" 1-C5H110Na	C ₆ H ₆	" (25) " (43)	882 882
	CH ₃ O CH ₃ O CH ₂ CN CH ₂ CN OCH ₂ CO ₂ C ₂ H ₃	_	Na	Toluene	CH ₃ O CH ₃ O CH ₃ O CN (71)	883
	(CH ₂ ) ₄ CN	-	LDA	THF	(89) ⁴	146
		-			(-) ^r	146,285
	4-C ₆ H ₅ C ₆ H ₄ CH ₂ CN	Br(CH ₂ ) ₂ Br	NaNH ₂	Et ₂ O	$\overset{\text{CN}}{\overset{4-C_6H_5C_6H_4}{\swarrow}} \overset{\text{CN}}{\overset{(-)}{\longrightarrow}}$	192
		Br(CH ₂ ) ₃ Br		1.	$\Box^{CN} C_6 H_4 C_6 H_5 - 4  (-)$	192
		Br(CH ₂ ) ₄ Br	•		4-C ₆ H ₅ C ₆ H ₄ (-)	192
	(C ₆ H ₅ ) ₂ CHCN	CI(CH ₂ ) ₃ CN		NH3, Et2O	$C_6H_5$ $C_6H_5$ $C_6H_5$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$ $C_7$	228
	2-(4-ClC ₆ H ₄ O)C ₆ H ₄ CH ₂ CN	CH ₃ N[(CH ₂ ) ₂ Cl] ₂	NaH	DMSO	2-(4-ClC ₆ H ₄ O)C ₆ H ₄ CN	884
	2-(4-ClC ₆ H ₄ S)C ₆ H ₄ CH ₂ CN				2-(4-CIC ₆ H ₄ S)C ₆ H ₄ CN	885
					N'	

244

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

247

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ (Contd.)	2-(4-XC ₆ H ₄ O)C ₆ H ₄ CH ₂ CN	CH ₃ N[(CH ₂ ) ₂ Cl] ₂				
			NaH "	DMF	$ \begin{array}{c}                                     $	216 216 216
	(C ₆ H ₃ ) ₂ CHCN	CI(CH ₂ ) ₄ CN	NaNH ₂	-	C ₆ n ₃ C ₆ n ₃ NH (-)	769
C15			LiN(C ₂ H ₅ ) ₂	THF	(59)	398
	$CH_{2}CH=CH(C_{6}H_{5})$		NaH	30	CH ₃ CN (94)	52
	$CH_3 BF_4 \text{ or } Clo_4$ $CH_3O (CH_2)_4CN$ $Cr(CO)_3$	-	LDA		CH30 CN (70)4	285
	Cr(CO) ₃	-	-		CN (-y	146
C17	CH30 NCCH2 CI		≀-C₄H9OK	DMF	CH ₃ O CN (46)	271
	CH ₃ O O NCCH ₂ OCH ₃ OCH ₃	2	NaOCH ₃	DMSO	CN OCH, (95)	155
	ö				ÓH	

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE VII. INTRAMOLECULAR REACTIONS OF

NITRILE-STABILIZED CARBANIONS (Continued)

				,
Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
3-XC ₆ H ₄ N CH ₂ C ₆ H ₅	-			
		KNH2	NH3, Et2O	$3-XC_{6}H_{4} \xrightarrow{CN} II$ $CH_{2}C_{6}H_{5}$ $X = H, I  (major isomer), II  (-)$ $X = OCH_{3}$
CH ₃ O NCCH ₂ OCH ₃	-	NaOCH3	DMSO	CH ₃ O (94)
сн ₃ о о осн ₃	5		DMF	CH3O OH OCH3 " (80)
CH ₃ O NCCH ₂ OCH ₃ CH ₃ CH ₃ O O OCH ₃	÷.	•	DMSO	$CH_{3}O \xrightarrow{CN} CH_{3} (-)$ $CH_{3}O \xrightarrow{CN} CH_{3} (-)$ $CH_{3}O \xrightarrow{CN} CH_{3} (-)$
C ₆ H ₅ CH(CN)(CH ₂ ) ₂ CH ₂ N(CH ₃ )CH ₂ C ₆ H ₅	Br(CH ₂ ) ₂ Cl	Na	NH3, toluene	CH ₃ N C ₆ H ₅ (65)
C ₆ H ₃ S (CH ₂ ) ₃ CN CH ₂ Cl	2	LiN(C ₂ H ₅ ) ₂	THF, HMPA, — 78°	C ₆ H ₃ S CN (81)
NCCH,	-	ı-C₄H9OK	0- 1	
CH ₃ O NCCH ₂ OCH ₃ CH ₃ CH ₃ O O OCH ₃	_	NaOCH3	DMSO	CH ₃ O CN CH ₃ O CH ₃ (-) CH ₃ O OH OCH ₃

No. of C Atoms

C19-C20

C20

249

Refs.

225 225

269,886

269,886

270

887

888

865

REACTIONS OF NITRILE-STABILIZED CARBANIONS

NITRILE-STABILIZED CARBANIONS (Continued)

TABLE VII. INTRAMOLECULAR REACTIONS OF



Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.	
NaOCH3	DMF	$CH_{3}O$ $CH_{3}O$ $CH_{4}O$ $CH_{$		
KNH2	NH ₃ , Et ₂ O	$C_6H_5$ $C_6H_5$ (64) $C_6H_5$ $CN$	109	
NaOCH3	DMSO		] I, 268	
		HO $CH_3O$ $OCH_3$ I:II = 1:1 (-)	I	
JaH	THF		4) 889	
NaHCO3	CH ₂ Cl ₂ CHCl ₃ CH ₃ OH	I $Y = H, Z = CN$ (90) I $Y = Z = CO_2CH_3$ (80) I $Y = Z = CO_2CH_3$ (89)	890 890 890	
# REACTIONS OF NITRILE-STABILIZED CARBANIONS



" The precise leaving group in the alkylating agent was unspecified.

^b The initial product was oxidized with iodine.

' The initial product was quenched with CF₃CO₂H at low temperature and oxidized with iodine.

⁴ The initial product was quenched with CF₃CO₂H at low temperature and exposed to aqueous ammonium hydroxide.

TABLE VIII. ALKYLATION OF UNSATURATED

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 

255

NITRILES WITH ALKYL HALIDES

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	CH,=CHCH,CN	СНЛ	CHJLi	Ether, THF, - 100°	$CH_3 = CHC(CH_3)_3 CN$ (64)	44
			LDA	THF, -78°	$CH_{2} = CHCH(CH_{2})CN$ (75)	399
		i-CaH-I		*	$CH_3 = CHCH(C_3H_{3-1})CN$ (72)	399
		CH.=CHCH.Br			$CH_{+}=CHCH(CH_{+}CH=CH_{+})CN$ (98)	399
		HC=CCH.Br			$CH_{+}=CHCH(CH_{+}C=CH)CN$ (90)	399
		CH.C(CI)=CHCH.Br			$CH_{2} = CHCH[CH_{2}CH_{2}CH_{2}CH_{3}]CN (97)$	300
		r-C.H.I			$CH_{+} = CHCH(C, H_{+}*)CN_{-}(0)$	300
		BCH CO C H			CH = CHCH(CH CO C H)(N) (95)	300
		CHCHB.			$CH_{2} = CHCH(CH_{2}CH_{2}CH_{3})CH^{2}(95)$	300
		"	CH 1	Et O THE - 100°	CH = CHC(CH C H I CN (70-80))	103
	CH CH-CHCN	CH P-		THE HMDA 79°	$CH_2 = CHC(CH_2C_6H_5)_2CH(10-60)$	105
	Ch ₃ Ch-ChCN	n-C8H17Br	LDA	THE, HMEA, -78	$CH_2 - CHC(C_8H_{17} - h)_2 CH (-)$	105
C,	(CH ₃ ) ₂ C=CHCN or CH ₂ =C(CH ₃ )CH ₂ CN	СН3І	NaNH ₂	NH3	$CH_2 = C(CH_3)C(CH_3)_2CN  (40)$	403
	CH ₃ CH=CHCH ₂ CN	n-C ₃ H ₇ Cl	50% aq NaOH, [C6H3CH2N(C2H5)3]Cl		$CH_{3}CH = CHCH(C_{3}H_{7}-n)CN  (74)$	570
	(CH ₃ ) ₂ C=CHCN	(CH ₃ ) ₂ C=CHCH ₂ Cl	кон	DMSO	$(CH_3)_2C = C(CN)CH_2CH = C(CH_3)_2$ (55) (E) and (Z)-(CH_3)_2C = CH(CH_2)_2C(CH_3) = CHCN (7)	400
C ₆	i-C ₃ H ₇ CH=CHCN	CH31	NaNH ₂	NH3	$(CH_3)_2C = CHC(CH_3)_2CN$ (traces)	403
	(CH ₃ ) ₂ C=CHCH ₂ CN				" (34)	403
	$(E/Z)-C_2H_5(CH_3)C=CHCN$		**		(E)- and (Z)-CH ₃ CH=C(CH ₃ )C(CH ₃ ) ₂ CN (31)	403
	$(CH_1)_2C = C(CH_1)CN$		"		$CH_2 = C(CH_3)C(CH_3)_2CN$ (83)	403
	NCCH,CH=CHCH,CN		NaOH	DMF	$NCC(CH_1)_{2}CH = CHC(CH_1)_{2}CN$ (72)	404
		C.H.I			$NCC(C_{1}H_{4})CH = CHC(C_{1}H_{4})CN(-)$	404
		n-CAHol"	**		$NCC(C_4H_6-n), CH = CHC(C_4H_6-n), CN(-)$	404
C.	CH.=CHCH(CH.CH=CH.)CN	CH.I	I DA	THE - 78°	$CH_{-}=CHC(CH_{-}CH_{-}CH_{-})(CH_{-})CN_{-}(86)$	100
-1	eng-enen(engen-eng)en	LC H I	" "		$CH_{2} = CHCH_{2}(CH_{2}CH_{2})(CH_{2}i)(CN_{2}i)$	300
		CH =CHCH Br			$CH = CHC(CH, CH = CH_2)(C_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)(CH_3H_3)$	300
		n-C H Br			$CH = CHC(CH, CH = CH_2)/C(CH_2 + a)/CN_2 (83)$	300
		CH C(CI)-CHCH Br	**		$CH = CHC(CH CH = CH_2)(C_1 H_2 H_2 H_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3 H_3$	300
		B-CH CO C H			$CH_2 = CHC(CH_2CH = CH_2)[CH_2CH = C(C)(CH_3)]CH (37)$	399
	(CH) C=C(CH)CH CN	CH I	NaNH	NH	$CH_2 = CHC(CH_2CH = CH_2)(CH_2CO_2C_2H_3)CN (93)$	402
	(Ch3)2c=c(Ch3)Ch2ch	"	""""""""""""""""""""""""""""""""""""""	NH3	$CH_2 - C(C_3 n_7 - 1)C(CH_3)_2 CN (36)$	403
	CH = CHCH(CH CO CH XCN		LINESICH ) T	TUE 700	$CH_{3}/2C = C(CH_{3})C(CH_{3})_{2}CN (44)$	402
	en_=enen(en_eo_en_)en	CH -CHCH B.	""""""""""""""""""""""""""""""""""""""	IHF /8	$CH_2 = CHC(CH_2CU_2C_2H_5)(CH_3)(CN_1(80))$	399
		"C U I			$CH_2 = CHC(CH_2CH = CH_2)(CH_2CU_2CH_3)(CN (98))$	399
					$CH_2 = CHC(C_4H_9 - n)(CH_2CO_2CH_3)(CN (90))$	399
					$CH_2 = CHC(CH_2CO_2CH_3)[CH_2CH = C(CI)CH_3]CN  (92)$	399
		BrcH2CO2C2H3			$CH_2 = CHC(CH_2CO_2CH_3)(CH_2CO_2C_2H_5)CN  (97)$	399
	CN				X	
	$\bigcirc$	CH ₃ I	LDA	HMPA, THF	(78)	401
	~		LDA, tetramethyl-12-crown-4	THF	" (72) i-C ₃ H ₇ CN	401
		i-C3H7I	LDA	HMPA, THF	(63)	401

C10

C11

C13

#### ORGANIC REACTIONS

TABLE VIII. ALKYLATION OF UNSATURATED

REACTIONS OF NITRILE-STABILIZED CARBANIONS

NITRILES WITH ALKYL HALIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	CN A				>-XCN	
C ₇ (Contd.)	$\bigcirc$	(CH ₃ ) ₂ C=CHCH ₂ Br ⁴	LDA	HMPA, THF	(55)	401
(,	$CH_2 = CHCH(CH_2CH = CH_2)CN$ $CH_2 = CHCH(CH_2CO_2CH_3)CN$	C ₆ H ₃ CH ₂ Br	Lin[Si(CH ₃ ) ₃ ] ₂	THF, -78°	$CH_2 = CHC(CH_2CH = CH_2)(CH_2C_6H_5)CN  (97)$ $CH_2 = CHC(CH_2C_6H_5)(CH_2CO_2CH_3)CN  (97)$	399 399
C ₈	CN	СН₃І	LDA	<b>ТНF</b> , <b>НМР</b> А	C(CH ₃ ) ₂ CN (-)	206
	2-CH ₃ C ₆ H ₄ CN	i-C ₃ H ₇ Br ⁴ Br(CH ₂ ) ₄ Br (CH ₃ ) ₂ CBrC(CH ₃ ) ₂ Br	KNH ₂ NaNH ₂ "	NH ₃ , Et ₂ O	2- <i>i</i> -C ₄ H ₉ C ₆ H ₄ CN (69) [2-NCC ₆ H ₄ (CH ₂ ) ₃ ] ₂ (67) (2-NCC ₆ H ₄ CH ₂ ) ₂ (52)	405 407 407
		n-C ₅ H ₁₁ Br ⁴ C ₆ H ₃ CH ₂ Cl	KNH₂ NaNH₂ KNH₂ NaNH₂		2- $n-C_6H_{13}C_6H_4CN$ (66) 2- $NCC_6H_4(CH_2)_2C_6H_5$ (77) " (81) 2 NCC H (CH ) C H CI 4 (64)	405 406,407 405
	3-CH ₃ C ₆ H ₄ CN	4-CH ₃ C ₆ H ₄ CH ₂ Cl ^a n-C ₃ H ₇ Br n-C ₃ H ₁₁ Br ^a		NH3 THF, HMPA, -78° "	$2-NCC_{6}H_{4}(CH_{2})_{2}C_{6}H_{4}CH_{3}-4  (21)$ $3-n-C_{4}H_{9}C_{6}H_{4}CN  (37)$ $3-n-C_{6}H_{13}C_{6}H_{4}CN  (30)$	407 405 408 408
	4-CH ₃ C ₆ H ₄ CN	$n-C_6H_{13}Br$ $n-C_4H_9Br$ $Br(CH_2)_4Br$ $(CH_3)_2CBrC(CH_3)_2Br$	NaNH ₂	". NH ₃ , Et ₂ O	$3-n-C_{7}H_{15}C_{6}H_{4}CN  (34)$ $4-n-C_{5}H_{11}C_{6}H_{4}CN  (63)$ $[4-NCC_{6}H_{4}(CH_{2})_{3}]_{2}  (63)$ $(4-NCC_{6}H_{4}CH_{2})_{2}  (55)$	408 407 406,407 407
	9.225	4-CIC ₆ H ₄ CH ₂ Cl	LDA NaNH ₂	THF, HMPA, -78° NH ₃ , Et ₂ O	$4-NCC_{6}H_{4}(CH_{2})_{2}C_{6}H_{5} (71)$ " (75) $4-NCC_{6}H_{4}(CH_{2})_{2}C_{6}H_{4}Cl-4 (86)$	406,407 408 407
C10	CN CN	СН³і	LDA	ТНҒ, НМРА	CN (98)	206
	CH ₂ CN	C₅H₅CH₂CI	50% aq NaOH,	90-100°	$C(CH_2C_6H_5)_2CN$ (-)	892
	H H	$\sim$	[C ₆ H ₃ CH ₂ N(CH ₃ ) ₃ ]Cl		N' CH ₂ C ₆ H ₅	
	CH ₂ CN	OCH2CH=CH(CH2)2I	LICA	THF, HMPA, -25°		893
Cıı		X(CH ₂ ) ₂ Cl	NaNH-	Toluene	$\int_{-\infty}^{\infty} C(C_4 H_3 s-2) [(CH_2)_2 X] CN I$	330
	C(CH ₃ )CN			"	$I = N(CH_{3/2} (-))$ $I = N(CH_{2})_{5} (-)$ $C(CH_{3})_{2}CN$	339
C ₁₃	/-C₄H₀	CH31	LDA	ТНГ, НМРА	r-C ₄ H ₉ (98)	206

TABLE VIII. ALKYLATION OF UNSATURATED

NITRILES WITH ALKYL HALIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₃	C(CN)C ₆ H ₅ or	X(CH ₂ ) ₂ Cl	1		C(C ₆ H ₅ )[(CH ₂ ) ₂ X]CN I	
(Conta.)	CH(C ₆ H ₃ )CN		NaNH ₂	Toluene	$ I X = N(CH_3)_2 (-)  I X = N(CH_2)_3 (-) $	339 339
C14	C(C ₆ H ₄ OCH ₃ -3)CN	(CH ₃ ) ₂ N(CH ₂ ) ₂ Cl		-	$C(C_{6}H_{4}OCH_{3}-3)[(CH_{2})_{2}N(CH_{3})_{2}]CN  (-)$	339
	C(C ₆ H ₃ )CN	n-C ₃ H ₇ Br	C10HaNa	THF	$C(C_6H_5)(C_3H_7-n)CN $ (-)	198
		X(CH ₂ ) ₂ Cl			C(C ₆ H ₃ )[(CH ₂ ) ₂ X]CN	
			NaNH ₂	Toluene	$1 X = N(CH_3)_2 (69)$	339
					$I  X = N(C_2 I_{5/2}  (-))$ $I  X = N(CH_2)_4  (-)$	339
			-		$1 X = N(CH_2)_{5} (-)$	339
	C(C6H4OCH3-3)CN				$A = CH_2 N(CH_2)_5 (-)$	339
Cis	()	X(CH ₂ ) ₂ Cl				
					$X = N(CH_1), ()$	339
		0.11.011.01			$1 X = N(CH_2)_5 (-)$	339
	$2-[C_6H_5(CH_2)_2]C_6H_4CN$ $4-[C_6H_5(CH_2)_2]C_6H_4CN$	Br(CH ₂ ) ₄ Br		NH ₃ , Et ₂ O	$2-[(C_6H_5CH_2)_2CH]C_6H_4CN$ (44) (4-NCC_6H_4CH(CH_2C_6H_5)CH_2CH_2]_2 (20)	407 407
C1 -18	X CH2CN					
	CH ₂ C ₆ H ₅		1.1		 Сн ₂ С ₆ н ₃	
		CH ₃ I n-C.H.Br"		NH,	$I = CH_3, X = H (95)$ $I = CH_3, X = H (95)$	894
		i-C ₃ H ₇ Br ^e	•		$R = C_3 H_{7} - H_{7} X = H_{7} (92)$ $R = C_3 H_{7} - H_{7} X = H_{7} (91)$	894
	CH ₂ CN	CH ₃ I		-	$I = CH_3, X = OCH_3  (80)$ $C(R)_2 CN$	894
	x				x X II	
	CH2C6H3				CH ₂ C ₆ H ₅	2
		CH ₃ I C ₃ H ₂ Br [#]			II $R = CH_3$ , $X = H$ (72) II $R = C_2H_2$ , $X = H$ (72)	894
		CH ₃ I	•		$\begin{array}{ll} R = CH_3, X = OCH_3  (91) \end{array}$	894

" The precise leaving group in the alkylating agent was unspecified.

258

REACTIONS OF NITRILE-STABILIZED CARBANIONS

TABLE IX. ACYLATION OF UNSATURATED NITRILE-STABILIZED CARBANIONS WITH CARBOXYLIC ESTERS AND NITRILES

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C.	2-CH3C6H4CN	C2H3CO2CH34	KNH ₂	NH ₃ , Et ₂ O	2-NCC ₆ H ₄ CH ₂ COC ₂ H ₅ (42)	405
2		i-C3H2CO2CH3			2-NCC, H, CH, COC, H,-i (51)	405
5		C.H.CO,CH,			2-NCC HACH, COC H. (66)	405
			NaNH,	NH ₃	" (40)	406
		4-CH3C6H4CO2CH			2-NCC HACH, COC HACH, 4 (46)	405
	4-CH3C6H4CN	4-CH3C6H4CN	LDA	THF, HMPA, -78°	4-NCC6H4CH2COC6H4CH3-4 (76)b	408

* The precise leaving group in the electrophile was unspecified. * The initial product was hydrolyzed.

TABLE X. ADDITION OF UNSATURATED NITRILE-STABILIZED CARBANIONS TO ALDEHYDES, KETONES, AND VARIOUS MICHAEL ACCEPTORS

No. of C Ato	ms Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C4	CH3CH=CHCN	CH ₃ CH=CHCN	C ₆ H₃CH₂K	C ₆ H ₃ CH ₃	CH ₃ CH=C(CN)CH(CH ₃ )CH ₂ CN I (20-23) CH ₃ NC CN (67-75)	, 895
261 C ₈	4-CH₃C6H₄CN	" 4-CIC6H4CHO	[(C2H3)4N]CN " LDA	CH₃CN CH₃CN, r-C₄H∍OH THF, HMPA,  — 78°	$CH_{3} \leftarrow CH_{3}$ $CN$ I (54) I (52) 4-NCC_{6}H_{4}CH_{2}CH(OH)C_{6}H_{4}Cl-4 (76)	896 896 408
	CH3 CN	CH ₃ CH ₂ O	) LTMP	THF, -78°	$CH_3 \xrightarrow{CH_2O} O (43)$	897
	4-CH ₃ C ₆ H ₄ CN 2-CH ₃ C ₆ H ₄ CN	(2-C ₃ H ₄ N)COC ₆ H ₅ (C ₆ H ₅ ) ₂ CO	LDA LiN(CH ₃ ) ₂ LDA	ТН <b>F, HMPA, – 78°</b> "	$4-NCC_6H_4CH_2COH(C_5H_4N-2)C_6H_5$ (73) $2-NCC_6H_4CH_2C(C_6H_5)_2OH$ (53) " (40)	408 408 408

TABLE X. ADDITION OF UNSATURATED NITRILE-STABILIZED CARBANIONS TO ALDEHYDES, KETONES, AND VARIOUS MICHAEL ACCEPTORS (Continued)

	No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	C ₈ (Contd.)	3-CH3C6H4CN	(C ₆ H ₅ ) ₂ CO	LiN(CH ₃ ) ₂	THF, HMPA, -78°	Ar N (10), Ar N Ar	408
262				LDA		Ar = $3-CH_3C_6H_4$ $3-CH_3C_6H_4(C=NH)N(CH_3)_2$ (40) $3-NCC_6H_4CH_2C(C_6H_3)_2OH$ (28-41)	408
		4-CH ₃ C ₆ H ₄ CN		LiN(CH ₃ ) ₂ LDA NaNH ₂		4-NCC ₆ H ₄ CH ₂ C(C ₆ H ₃ ) ₂ OH (67) " (88) " (54)	408 408 406
		3-CH ₃ C ₆ H₄CN	1-C ₁₀ H ₇ COC ₆ H ₅ [4-(CH ₃ ) ₂ NC ₆ H ₄ ] ₂ CO	LDA		$3-NCC_{6}H_{4}CH_{2}C(C_{6}H_{3})(C_{10}H_{7}-1)OH (39)$ $3-NCC_{6}H_{4}CH_{2}C[C_{6}H_{4}N(CH_{3})_{2}-4]_{2}OH (45)$	408 408
		4-CH ₃ C ₆ H ₄ CN	(1)	LiNH ₂	NH ₃ , Et ₂ O	(77)	396
			C ₆ H ₅			CH(C6H3)CH2C6H4CN-4	

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C,	(CH ₃ ) ₂ C=CHCN	Br(CH ₂ ) ₅ Br	LDA	ТНГ, НМРА	NC (82)	206
		(CH ₃ ) ₂ C=CHCN	-	DME	(90)	898
	CH ₂ =C(CH ₃ )CH ₂ CN	CH ₂ =C(CH ₃ )CH ₂ CN (CH ₃ ) ₂ C=CHCN	LiN(C2H3)2 C10H8Li, (C2H3)2NH	THF, -78° THF	" (75) " (85)	899 900
C ₆	$(C_2H_3)(CH_3)C=CHCN$ (E:Z = 60:40)	$(C_2H_3)(CH_3)C=CHCN$ (E:Z = 60:40)	LDA	DME	$C_2 H_5 (60)$	898
C10		Br(CH ₂ ) ₄ Br		THF, HMPA	CN (-)	206
		Br(CH₂)₅Br	79		(-)	206

# TABLE XI. INTRAMOLECULAR REACTIONS OF UNSATURATED NITRILE-STABILIZED CARBANIONS

### ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

265

TABLE XII. ALKYLATION OF ANIONS OF PROTECTED

### CYANOHYDRINS WITH ALKYL HALIDES

No. of				100 C 100		
C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C.	(CH ₃ O) ₂ CHCN	n-CaH17Br	LDA	THF, HMPA, -78°	(CH ₃ O) ₂ C(C ₈ H ₁₇ -n)CN (55)	901
С,	CH ₂ =CHCH(CN)OSi(CH ₃ ) ₃	CH3I		THF, -78°	CH ₂ =CHC(CH ₃ )(CN)OSi(CH ₃ ), (77)	902,416
		I-C3H7I			$CH_{3} = CHC(C_{3}H_{7}-i)(CN)OSi(CH_{3})_{3} $ (58)	902,416
	An Arrest Addition in Sec.	CH ₂ =CHCH ₂ Br*	-		$CH_2 = CHC(CH_2CH = CH_2)(CN)OSi(CH_3)_3$ (79)	421
	CH ₃ CH(CN)OCH(OC ₂ H ₃ )CH ₃	CH3OCH3CI	2	THF, HMPA, -78°	$CH_3C(CH_2OCH_3)(CN)OCH(OC_2H_3)CH_3$ (71)	413
			-		$CH_3C(C_3H_{1^{-1}})(CN)OCH(OC_2H_3)CH_3$ (80)	413
		-C.H.Br			$CH_{1}C(CH_{2}CH=CH_{2})(CN)OCH(OC_{2}H_{3}CH_{3}(10)$	413
		in of the second s				
	CH2=CHCH(CN)OSi(CH3)2	(CH ₃ ) ₂ C=CHCH ₂ Br ⁴		THF, -78°	OSi(CH ₃ ), (48)	421
	CH.CH(CN)OCH(OC.H.)CH.	C.H.Br		THE HMPA -78°	CH.C(C.H.)(CN)OCH(OC.H.)CH, (80)	413
	enjenter vernte sjulienj	n-CaH13Br			CH,C(C,H,1,-n)(CN)OCH(OC,H,)CH, (80-85)	413
		C ₆ H ₁₁ Br		-	CH ₃ C(C ₄ H ₁₁ )(CN)OCH(OC ₂ H ₃ )CH ₃ (41)	413
		$(Z)-C_2H_3CH=CH(CH_2)_2I$			$CH_3C[(CH_2)_2CH=CHC_2H_3](CN)OCH(OC_2H_3)CH_3$ (61)	413
		(C2H3O)2CHCH2Br		•	CH ₃ C[CH ₂ CH(OC ₂ H ₃ ) ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃ (59)	413
		C ₆ H ₅ (CH ₂ ) ₂ Br		•	CH ₃ C[(CH ₂ ) ₂ C ₄ H ₃ ](CN)OCH(OC ₂ H ₃ )CH ₃ (84)	413
2	and the construction of the	n-C10H21Br			CH ₃ C(C ₁₀ H ₂₁ -n)(CN)OCH(OC ₂ H ₃ )CH ₃ (80-85)	413
C ₈	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	CH31		THF, -78°	$CH_3CH=CHC(CH_3)(CN)OSi(CH_3)_3$ (87)	416,902
		C ₂ H ₃ I			$CH_{3}CH=CHC(C_{3}H_{3})(CN)OSi(CH_{3})_{3} (85)$	416,902
			÷.		$CH_{3}CH = CHC((CH_{3})_{2}Br_{3}(CN)OSi(CH_{3})_{3} (31)$	416,902
		CH.=CHCH.Br	-		$CH_{1}CH=CHC(C_{1}H_{1})(CN)OS(CH_{1})_{1} (62)$ $CH_{1}CH=CHC(CH_{1}CH_{1})(CN)OS(CH_{1})_{1} (62)$	416 421 90
		Br(CH_).Br	-	-	$CH_CH_CH_CH_CH_CH_CH_CH_CH_(CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_C$	416.907
	CH.=C(CH.)CH(CN)OSi(CH.).	CHJ		· · · · · · · · · · · · · · · · · ·	$CH_{+}=C(CH_{+})C(CH_{+})(CN)OS(CH_{+}), (80)$	416.902
	enj-c(enj)en(en)ob(enj)j	HC.H.I			$CH_{*} = C(CH_{*})C(C,H_{*},0)(CN)OSi(CH_{*}),  (67)$	416,902
	CH_=C(OCH_)CH(CN)OSi(CH_),	CH,I	-	THF	CH,=C(OCH,)C(CH,)(CN)OSi(CH,), (80)	902
	and designation and the	1-C,H,I	•		$CH_1 = C(OCH_1)C(C_1H_1-i)(CN)OSi(CH_1)_1$ (75)	902
	CH2=CHCH(CN)OCH(OC2H3)CH3	C ₆ H ₃ CH ₃ Br			$CH_{3} = C(OCH_{3})C(CH_{2}C_{4}H_{3})(CN)OSi(CH_{3}), (80)$ $CN = CN =$	902
					X-	5.4.64
		(E)-CICH=CHCH2CI		THF, HMPA	1 X = X' = H, X' = C1 (39)	417,415
					1 x' = x' = H, x = CI (-)	417,413
		chj=ccichjci		and the second second	$1 \ x = x = H, x^{-} = CI \ (38)$	417
	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	n-CAH,Br		THF, -78°	$CH_{3}CH=CHC(C_{4}H_{9}\cdot n)(CN)OSi(CH_{3})_{3}(73)$	416,902
		(E)-CH ₂ CH=CHCH ₂ Br		-	$CH_{3}CH=CHC(C_{4}H_{2}+t)(CN)OS_{4}(CH_{3})_{3} (53)$ $CH_{3}CH=CHC(CH_{3}CH=CHCH_{3})(CN)OS_{4}(CH_{3})_{3} (-)$	421
		<b>—</b> 9			CL	
		11		-		416
		O CH3Br			OS((CH ₃ ))	410
	CH,=CHCH(CN)OCH(OC,H.)CH,	n-C.H.Br		THE HMPA -78	CH.=CHC(C.H.,-=)(CN)OCH(OC.H.)CH. (75)	413
	CH,CH=CHCH(CN)OSi(CH,),	C.H.CH2Br		THF 78°	CH_CH=CHC(CH_C_H_)(CN)OS(CH_), (76)	416,902
		C ₆ H ₅ (CH ₂ ) ₂ Br	-		CH,CH=CHCI(CH,),C,H,](CN)OS(CH,), (40-76)	416,902
		CH,OSO2C.H.CH.4			CH,CH=CHC(CH,)(CN)OSi(CH,), (82)	416,902
		n-C4H9OSO2C6H4CH3-4			$CH_3CH=CHC(C_4H_9-n)(CN)OSi(CH_3)_3$ (62)	416,902
	CH ₂ =C(CH ₃ )CH(CN)OSi(CH ₃ ) ₃	C ₆ H ₅ (CH ₂ ) ₂ Br		•	$CH_{2} = C(CH_{3})C[(CH_{2})_{2}C_{6}H_{3}](CN)OSI(CH_{3})_{3}$ (58)	416,902
с,	C ₆ H ₃ CH(CN)OCH ₃	CH ₂ Br ₂	50% aq NaOH, [C.H.CH.N(C.H.))]Cl	-	C ₆ H ₅ C(CH ₃ Br)(OCH ₃ )CN (70)	194
		C ₂ H ₃ Br		-	C4H3C(C2H3)(OCH3)CN (75)	194
		Br(CH ₂ ) ₂ Br		-	$C_{e}H_{s}C[(CH_{2})_{2}Br](OCH_{3})CN$ (12)	194
		n-C ₃ H ₇ Br		-	C ₆ H ₅ C(C ₃ H ₇ -#)(OCH ₃ )CN (73)	194

I-C.H.CH(CN)OCH(OC,H.)CH

#### ORGANIC REACTIONS

3-(Bromomethyl)furan

TABLE XII. ALKYLATION OF ANIONS OF PROTECTED

-	in the second				
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield
Contd.)		i-C₃H₂Br	50% aq NaOH.	7	C ₆ H ₅ C(C ₃ H ₇ -i)(OC
		CH,=CHCH,CI		-	C.H.C(CH,CH=C
	(CH ₃ ) ₂ C=CHCH(CN)OSi(CH ₃ ) ₃	CH'I	LDA	THF, - 78°	(CH ₃ ) ₂ C=CHC(CI
		i-C31111			(CH ₃ ) ₃ C=CHC(C
		CH I		-	OC HOYOCH
	CH(CN)OSi(CH ₃ ),	Сны			(rethjo)cochj
		i-C3H1I		-	(2-C4H3O)COC3H
	C ₆ H ₃ CH(CN)OCH ₃	(CH ₃ ) ₂ C=CHCH ₂ Cl	50% aq NaOH, [C ₈ H ₃ CH ₁ N(C ₂ H ₅ ) ₃ ]Cl	-	C ₄ H ₃ C[CH ₃ CH=0
		C6H3CH2CI			C.H.C(CH2C6H3)
	(CH ₃ ) ₂ C=CHCH(CN)OSi(CH ₃ ) ₂	C ₆ H ₃ (CH ₂ ) ₂ Br	LDA	THF	(CH ₃ ) ₂ C=CHC[(C
10	CH ₂ =CHCH(CN)OSi(C ₂ H ₅ ) ₃	СН,		THF, -78°	CH2=CHC(CH3)( 1:11 = 95:5 (79)
	(CH ₃ ) ₃ SiCH ₂ CH=C(CN)OSi(CH ₃ ) ₃	•	C•1		(CH ₃ ) ₃ SiCH=CHC
	CH,(CH=CH),CH(CN)OSi(CH.),		•		1:11 = 60:40 (77
	I-Cyanoisochroman	CH'I.	NaNH ₂	C ₆ H ₆	1-Cyano-1-methylisc
	$\wedge$				
	CH(CN)OSi(CH ₃ ) ₃	снј	LDA	THF, - 78°	2-C,H4NCOCH,
					4-C ₃ H ₄ NCOCH ₃ (
	C ₆ H ₃ CH(CN)OC ₂ H ₃ 4-CIC ₆ H ₄ CH(CN)OC ₂ H ₃	C1H1	<i>ι</i> -C₄H₀OK	THF	C ₆ H ₅ C(C ₂ H ₅ )(OC ₂ 4-C(C ₂ H ₂ C(C ₂ H ₃ )(OC ₂ )
	I-Cyanoisochroman	C2H3Br*	NaNH ₂	C.H.	1-Cvano-1-ethylisoch
		CH3OCH3CH			1-Cyano-1-(methoxy
		CH3SCH2CI			1-Cyano-1-(methylth
	CH ₃ (CH=CH) ₂ CH(CN)OSi(CH ₃ ) ₃	i-C ₃ H ₇ I	LDA	THF 78°	CH ₃ (CH=CH) ₂ C(C
	$\square$	-			
	O CH(CN)OSi(CH ₃ ) ₃				O C(C3H7-i)(
	1-Cyanoisochroman	n-C ₃ H ₇ Br*	NaNH ₃	C.H.	1-Cyano-1-n-propyli
		i-C ₃ H ₇ Br [*]			1-Cyano-1-isopropyl
		C,H,SCH,CI*			1-Cyano-1-(ethoxym
	CH(CN)OSi(CH ₃ ) ₃				1-Cyano-1-(emynnio
	~	LC H.I	104		
		1-C3R11	LUA	THF, 78°	4-C3H4NCOC3H7-i
	~				
	CH(CN)OSi(CH ₃ ),				2-C ₃ H ₄ NCOC ₃ H ₇ -i
	N Chick ostich 3/3	· ·	0 <b>.</b> -0	•	3-C ₅ H ₄ NCOC ₃ H ₇ -i
	CH(CN)OCH(OC,H,)CH,	n-C ₄ H ₉ Br	•	THF, HMPA, 78°	2-C4H3OCOC4H9-1
		Br(CH ₂ ) ₆ CO ₂ C ₂ H ₃		THF, HMPA, -65° to -75°	() CLOCNICC

..

### CYANOHYDRINS WITH ALKYL HALIDES (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
-	C ₆ H ₃ C(C ₃ H ₇ -i)(OCH ₃ )CN (45)	194
-	$C_4H_4C(CH_2CH=CH_2)(OCH_3)CN$ (73)	194
THF, -78°	$(CH_3)_2C=CHC(CH_3)(CN)OSi(CH_3)_3$ (88)	416,902
	$(CH_3)_3C = CHC(C_3H_7-i)(CN)OSi(CH_3)_3  (84)$	416,902
•	(2-C ₄ H ₃ O)COCH ₃ (92) ⁴	428,430
	(2-C ₄ H ₃ O)COC ₃ H ₇ -i (80) ⁶	428
-	$C_6H_3C[CH_2CH=C(CH_3)_2](OCH_3)CN$ (78)	194
-	C,H3C(CH2C,H3)(OCH3)CN (70)	194
THF	$(CH_3)_2C = CHC[(CH_2)_2C_6H_5](CN)OSi(CH_3)_3  (84)$	902
THF, -78°	$CH_2 = CHC(CH_3)(CN)OSi(C_2H_3)_3$ I, $C_2H_3CH = C(CN)OSi(C_2H_3)_3$ II	902
-	$(CH_3)_{3}SiCH=CHC(CH_3)(CN)OSi(CH_3)_3$ I, $(CH_3)_{3}SiCH(CH_3)CH=C(CN)OSi(CH_3)_3$ II, I:II = 60:40 (77)	902
	$CH_3(CH=CH)_2C(CH_3)(CN)OSi(CH_3)_3$ (97)	416,902
C ₆ H ₆	I-Cyano-I-methylisochroman (21)	903
THF. – 78°	2-C ₃ H ₄ NCOCH ₃ (80)*	428,430
	4-C₃H₄NCOCH₃ (84) ⁶	429,430
THF	C ₆ H ₃ C(C ₂ H ₃ )(OC ₂ H ₃ )CN (63)	424
	$4-C(C_6H_4C(C_2H_5)(OC_2H_5)CN  (51)$	424
C.H.	1-Cyano-1-ethylisochroman (35)	903
	I-Cyano-I-(metholybiomethyl)isochroman (20)	903
THF 78°	$CH_{3}(CH=CH)_{2}C(C_{3}H_{3}-i)(CN)OSi(CH_{3})_{3} $ (94)	416,902
c <del>)</del> r	$ \int_{O} \int_{C(C_3H_7-i)(CN)OSi(CH_3)_3} (98) $	430
C.H.	1-Cyano-1-n-propylisochroman (38)	903
( <b>¥</b> .)	1-Cyano-1-isopropylisochroman (11)	903
-	1-Cyano-1-(ethoxymethyl)isochroman (15)	903
	1-Cyano-1-(ethylthiomethyl)isochroman (19)	903
THF, -78°	4-C ₃ H ₄ NCOC ₃ H ₇ -i (80)*	429,430
•	2-C ₃ H ₄ NCOC ₃ H ₇ -i (75) ⁴	428,430
•	3-C ₅ H ₄ NCOC ₃ H ₇ -i (78)*	429,430
THF, HMPA, – 78°	2-C4H3OCOC4H9-n (90)*	413
THF, HMPA, –65° to –75°	(-)	420
THF, HMPA, –78°	(38)*	419

CII

#### ORGANIC REACTIONS

TARE VIL ALEVIATION OF ANIONS OF PROT

**REACTIONS OF NITRILE-STABILIZED CARBANIONS** 

CYANOHYDRINS WITH ALKYL HALIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base
C ₁₀ (Confid.)	CH(CN)OS(CH ₃ ),	C ₆ H ₃ CH ₃ Br	LDA
	(CH3)3C=CHCH(CN)OCH(OC1H3)CH3	DKi	
	⊷C₄H₅CH(CN)OCH(OC₂H₅)CH₃	OCH(OC,H,)CH,	
- -	$CH_3 = C(CH_3)CH(CN)OSi(C_2H_3)_3$	сн,і	
	C ₆ H ₃ CH(CN)OSi(CH ₃ ) ₃	CH,I	:
	C ₆ H ₃ CH(CN)OCH ₂ CH=CH ₂	C ₂ H ₃ Br	50% aq NaOH, [C4H4CH4N(C4H4)4]Cl
	C ₆ H ₃ CH(CN)OSi(CH ₃ ) ₃	C ₂ H ₄ I Br(CH ₂ ) ₂ Br	LDA
	CH(CN)OSi(CH ₃ ),	CH31	
	CH ₂ =C(CH ₃ )CH(CN)OSi(C ₂ H ₃ ) ₃	/-C3H3I	
	C.H.CH(CN)OSi(CH))		-
		CH ₂ =CHCH ₂ Br	
		Br(CH ₂ ) ₃ Br	
		CI(CH ₂ ) ₃ Br	

CH2=CHCH2Br

n-C₄H₉Br n-C₄H₉I n-C₄H₉Br n-C₄H₉Cl (-C₄H₉I (C₂H₃O)₂SO₄

0 CH,Br Δ CH,I Δ

CH,Br

C₆H₁₁Br (C₂H₃O)₂CHCH₂Br

C.H,CH,Br

.... .

CH(CN)OSi(CH,),

n-C₃H₁₁CH(CN)OCH(OC₂H₃)CH₃ C₆H₃CH(CN)OSi(CH₃)₃

Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
THF, -78°	3-C ₁ H ₄ NCOCH ₃ C ₆ H ₃ (84) ⁶	429,430
THF, HMPA, – 78°	СССР (63) ⁴	418
THF. – 78°	OCH(OC,1H,)CH, CH,2C(C,H,-i)[OCH(OC,H,)CH,]CN (100)	904
	л СH ₂ =C(CH ₃ )C(CH ₃ )(CN)OSi(C ₂ H ₃ ) ₃ 1, C ₂ H ₃ C(CH ₃ )=C(CN)OSi(C ₂ H ₃ ) ₃ II	902
:	$\begin{array}{l} 1:11 = 71:29  (90) \\ C_8H_5COCH_3  (98)^6 \\ &  "  (92)^6 \\ C_8H_5C(C_5H_3)(CN)OCH_5CH=CH_3  (44) \end{array}$	428,430 429,430 194
:	C ₆ H ₃ COC ₂ H ₃ (98) ⁶ C ₆ H ₃ COCH ₂ Br (30) ⁶	428,430 429
•	COCH, (63)*	428,430
THF	$CH_2 = C(CH_3)C(C_3H_7-i)(CN)OSi(C_2H_3)_3  I, i-C_3H_7CH_2C(CH_3) = C(CN)OSi(C_2H_3)_3  II$	902
THF, – 78° "	C ₆ H ₃ COC ₃ H ₃ -i (95) ⁶ C ₆ H ₃ COCH ₂ CH=CH ₃ (96) ⁶ C ₆ H ₃ CO(CH ₂ ) ₃ Br (80) ⁶ C ₆ H ₃ CO(CH ₂ ) ₃ Cl (85) ⁶ C(CH ₂ CH=CH ₂ )(CN)OSi(CH ₃ ) ₃	428,430 429,430 429,430 429,430
	(93)	421
THF, HMPA, – 78° THF, – 78° 	$n-C_{5}H_{1},C(C_{4}H_{9}-n)(CN)OCH(OC_{2}H_{3})CH_{3}$ (70) $C_{6}H_{5}COC_{4}H_{9}-n$ (74) " (72) ³ " (87) ⁶ $C_{6}H_{5}COC_{2}H_{9}-t$ (84) ⁶ $C_{6}H_{5}COC_{2}H_{3}$ (70) ⁶	413 430,429 430,429 430,429 428 430,429
	C ₆ H ₃ COCH ₂ CHO (60)*	430,429
÷	сн ₂ сос ₆ н, (76) ⁹	430
•	" (80)*	430
-	C ₆ H ₅ COC ₆ H ₁₁ (48) ⁶ C ₆ H ₅ COCH ₂ CHO (20) ⁶ C ₆ H ₅ COCH ₂ C ₆ H ₅ (96) ⁶	429,430 430 428,430

### ORGANIC REACTIONS

TABLE XII. ALKYLATION OF ANIONS OF PROTECTED

REACTIONS OF NITRILE-STABILIZED CARBANIONS

CYANOHYDRINS WITH ALKYL HALIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
				( <del></del>	1	
C ₁₁ (Contd.)			LDA	THF, -78°	(59) ⁴	428
		3-(Chloromethyl)-4-methylpyridine		-	COCH2 (64)*	428
		CH (CH) P-		(a)		120 120
	cangen(en)os(en));		-	-	C H COCH (80)	429,430
		C.H.OSO.C.H.CH.4		-	C.H.COC.H. (85)	430,429
		I-C1H-OSO2C6H4CH3-4		DME 78°	C ₆ H ₃ COC ₃ H ₃ -i (81)*	430
		Br			çoc,H,	
					$\triangle$	
			•		(84)*	430
		C.H1			Calla-1	
		ACHOSOCHCH CH.4	-	DME	C.H.COC.H# (91)*	430.429
c	1 Curre 44 dimethalizesheaman			CH	L Crane I 44 trimethylicochromen (19)	003
C12	1-Cyano-4,4-dimethynsochroman	C-H-B-	NaNH ₂	Cone	1-Cyano-1-ethyl-4.4-dimethylisochroman (36)	903
		CH.OCH.C		-	1-Cyano-1-(methoxymethyl)-4.4-dimethylisochroman (25)	903
		CH-SCH-CI"			1-Cyano-4,4-dimethyl-1-(methylthiomethyl)-isochroman (12)	903
	C.H.CH(CN)OCH(OC,H.)CH,	I-C.H-Br	LDA	THF, HMPA, -78°	C.H.COC.Hi (94)*	413
		n-CAHaBr			C4H3COC4H9-1 (94)	413
		C ₆ H ₃ (CH ₂ ) ₂ Br	•		C.H.CO(CH1)2C.H. (71)*	413
	1-Cyano-4,4-dimethylisochroman	n-C3H7Br*	NaNH ₂	C.H.	1-Cyano-4,4-dimethyl-1-n-propylisochroman (25)	903
		C2H3OCH2CM		-	1-Cyano-1-(ethoxymethyl)-4,4-dimethylisochroman (7)	903
		C.H,CH2CI"	•		1-Benzyl-1-cyano-4,4-dimethylisochroman (35)	903
C13	C ₆ H ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	CH,I	LDA	THF, - 78°	$C_{6}H_{5}CH=CHCOCH_{3}$ (72)	428
	C ₆ H ₃ CH ₂ CH=C(CN)OSi(CH ₃ ) ₃	-	•		$C_6H_3CH=CHC(CH_3)(CN)OSi(CH_3)_2$ 1, $C_6H_3CH(CH_3)CH=C(CN)OSi(CH_3)_3$ 11 1:11 = 70.30 (90)	902
	4-(CH,),NC H,CH(CN)OSi(CH,),		-		4-(CH_)-NC_H_COCH_ (92)*	429,430
		(-C,H-I			4-(CH.).NC.H.COC.Hi (90)*	429,430
	C ₆ H ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	CaHaCHaBr			C.H.CH=CHCOCH,C.H. (65)	428
	$\sim$	C 5275				
		P.C.H. Br	Nell	DMSO	C.H.COC.H	414
	C.H.CH(CN)0 0		Nan	Dingo		
C14	C ₆ H ₃ CH(CN)OCH(OC ₄ H ₉ -n)CH ₃	CH2Br2*	50% aq NaOH, [C4H3CH3N(C2H3)3]Cl		C ₄ H ₃ C(CN)OHCH ₂ Br (73)*	422
		C2H3Br			$C_6H_5C(CN)OHC_2H_5$ (81) ⁴	422
	C ₆ H ₃ CH(CN)OC ₆ H ₃	CH ₂ Br ₂	•		$C_6H_5C(CH_2Br)(OC_6H_5)CN$ (70)	194
		C ₂ H ₃ Br		-	$C_6H_3C(C_2H_3)(OC_6H_3)CN$ (63)	194
		Br(CH ₂ ) ₂ Br		<b>T</b>	$C_6H_3C(CH_2CH_2Br)(OC_6H_3)CN$ (64)	194
	C ₆ H ₃ CH(CN)OCH(OC ₄ H ₉ -n)CH ₃	n-C3H,Br	-	-	$C_{0}H_{1}COH(C_{1}H_{1}-n)CN$ (71)	422
	C.H.CH(CN)OC H	CH_=CHCH_2CI			$C_{1}H_{2}C(H_{1}C)H_{2}C(H_{1}C)$	422
	consentences				$C_{H}C(C_{H}+i)OC_{H}C(N) $ (30)	194
		CH.=CHCH.CI		- C.	$C_{H}C(CH_{C}H=CH_{+})(OC_{+}H_{+}CN_{-}(7))$	194
		Br(CH_),Br		-	C.H.CI(CH.),Br](OC.H.)CN (15)	194
		(CH ₃ ) ₂ C=CHCH ₂ Cl			$C_{6}H_{3}C[CH_{2}CH=C(CH_{3})_{2}](OC_{6}H_{3})CN$ (69)	194
-15	C ₆ H ₃ CH(CN)OCH ₂ C ₆ H ₃	C ₂ H ₃ Br	•	1 2 <b>1</b> 1 1 1	$C_{6}H_{3}C(C_{2}H_{3})(OCH_{2}C_{6}H_{3})CN$ (71)	194
-16	1,3-[CH(CN)OSi(CH ₃ ) ₃ ] ₂ C ₆ H ₄	СНЈ	LDA	THF, -78°	1,3-(CH ₃ CO) ₂ C ₆ H ₄ (81) ⁶	428,430
	(CH_),SIOCH(CN)	0.12			CH.CO. COCH.	
		1.90	· ·		(44)*	430
	N				N.	

#### ORGANIC REACTIONS

### TABLE XII. ALKYLATION OF ANIONS OF PROTECTED

No. of C Atoms	Nucleophile	Electrophile	Base
C ₁₆ (Conid.)	CH(OSi(CH ₃ ) ₃ )CN	CH1=CHCH1Br	LDA
	1,3-[CH(CN)OSi(CH ₃ ) ₃ ] ₂ C ₆ H ₄	C ₆ H ₅ CH ₂ Br	•
	(CH ₃ ) ₃ SiOCH(CN) N	-	•
	CH(CN)OSi(CH ₃ ) ₃	(E)-CH3=C(CH3)(CH3)3CH=C(CH3)CH3CI	n-C ₆ H ₉ Li

* The precise leaving group in the alkylating agent was unspecified.

# REACTIONS OF NITRILE-STABILIZED CARBANIONS 273

## CYANOHYDRINS WITH ALKYL HALIDES (Continued)

Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
	C(CH_CH=CH_)(CN)OSi(CH_),		
THF,78°	CHAR	(83)	421
	1,3-C ₆ H ₄ (COCH ₂ C ₆ H ₅ ) ₂ (52)		430
-	C ₆ H ₃ CH ₂ CO N COCH ₂ C ₆ H ₃ (68)		430
	C(CN)[CH3C(CH3)=CH(CH3)2C(C	CH ₃ )=CH ₂ ]OSi(CH ₃ ) ₃	
÷.	CHAR	(58)	905

* The initial product was hydrolyzed.

No. of C atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
с,	C ₄ H ₃ CH(CN)OCH ₃	4-O2NC6H4CI	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₅ ]Cl	-	C ₆ H ₅ C(OCH ₃ )(CN)C ₆ H ₄ NO ₂ -4 (42)	194
C ₉ -C ₁₀	n-C3H7CH(CN)OCH(OC2H3)CH3	Cr(CO),	LDA	THF, 0°	C ₆ H ₅ COC ₃ H ₇ -n (90)*	146
	₽-C₄H ₉ CH(CN)OCH(OC₂H ₃ )CH ₃	CH,O OCH		ТНҒ, НМРА	3,5-{CH3O}2C6H3COC6H9-# (92)*	283,146
	+C3H7CH(CN)OCH(OC2H3)CH3	Q.		THF, 0°	C ₆ H ₅ COC ₃ H ₇ -i (88) ⁴	146
C12	C ₆ H ₃ CH(CN)OCH(OC ₂ H ₃ )CH,	Cr(CO),		THF	C ₆ H ₅ COC ₆ H ₅ (88)*	146
C ₁₃	C4H3CH(CN)O	4-FC ₆ H ₄ NO ₂	NaH	DMSO	C ₆ H ₃ COC ₆ H ₄ NO ₂ -4 (35) ⁶	414
		CI NO,			C ₄ H ₅ CO CF ₃ (42) ⁶	414
	3,4-(CH2O2)C6H3CH(CN)OCH(OC2H2)CH3	Cr, CO),	LDA	THF	3,4-(CH ₂ O ₂ )C ₆ H ₃ COC ₆ H ₅ (90)*	146
	C4H3CH2CH(CN)OCH(OC2H3)CH3	Стер	·	ТНГ, НМРА	C ₆ H ₃ CH ₃ COC ₆ H ₆ OCH ₃ -3 (100)*	283
C14	C ₆ H ₃ CH(CN)OC ₆ H ₃ Cl ₂ -2,4 C ₆ H ₃ CH(OC ₆ H ₃ )CN	C ₆ H ₅ NO ₂ 1-O ₂ NC ₁₀ H ₇	NaOH "	DMSO, 30°	4-02NC6H4CH(C6H2)CN () 4-02NC10H6CH(C6H2)CN (77)	279 279

## TABLE XIII. ARYLATION OF PROTECTED CYANOHYDRINS

"The initial product was treated with iodine followed by aqueous acid and base.

* The initial product was hydrolyzed.

No. of Reaction Nucleophile Electrophile Conditions Product(s) and Yield(s) (%) Refs C Atoms Base 275 C10 C₆H₅Li 903 1-Cyanoisochroman CICO2CH3 Dioxane-Et₂O 1-Carbomethoxy-1-cyanoisochroman (30)  $t-C_4H_9COCI$ ( $C_2H_5$ )₂NCOCI  $C_6H_5COCI$ 1-Cyano-1-pivaloylisochroman (26) 1-Cyano-1-(N,N-diethylcarbamoyl)isochroman (34) ** 903 . ,, ** 903 . . ,, 1-Benzoyl-1-cyanoisochroman (14) 903

TABLE XIV. ACYLATION OF ANIONS OF PROTECTED CYANOHYDRINS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
с,	CH,OCH,CN	(C ₆ H ₃ ) ₂ CO	n-C ₄ H ₉ Li	THF, O	(C ₆ H ₃ ) ₂ COHCH(OCH ₃ )CN (25)	336
		9-Fluorenone		÷		336
		4-CH3C6H4COC6H		•	4CH ₃ C ₆ H ₄ (C ₆ H ₃ )COHCH(OCH ₃ )CN (20) (CH ₃ ) _s SiO O	336
с,	CH2=CHCH(CN)OSi(CH3)3	$\bigcirc$	LDA	THF, -70°, to -100°	(30)*	449
	CH ₃ CH(CN)OCH(OC ₂ H ₅ )CH ₃	n-C ₃ H ₁₁ CHO	-	THF, HMPA, 78°	СН,СОСНОНС,Н11-7 (50)	446
2		Ŷ			HO COCH,	
5		$\bigcirc$			(68)'	446
		C.H.COC.H.	-		CH ₃ COCHOHC ₆ H ₃ (82) ⁶ CH ₂ COC(C,H ₂ ) ₂ OH (75) ⁶	446
C.	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	Сн,СНО	-	THF, -78°	CH_3CH=CHCOCH(CH_3)OSi(CH_3)_3 (50-71)*	906
	C ₂ H ₃ CH(CN)OCH(OC ₂ H ₅ )CH ₃	СН3СОСН3		THF, HMPA, 78°	C ₂ H ₃ COC(CH ₃ ) ₂ OSi(CH ₃ ) ₃ (42) ⁴	910
	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	r-C₄H₀CHO		THF, - 78°	NC OS(CH ₃ ), CH[OS(CH ₃ ), C ₄ H ₉ -r (63)	906
		<b>e</b>			(CH ₃ ) ₃ SiQ 0	
		$\bigcirc$		THF, - 70° to - 100°	(64-68)*	449,4
		$\sim$			(CH-)-SiQ Q	
	CH ₂ =C(CH ₃ )CH(CN)OSi(CH ₃ ) ₃	-			(46)*	449
	CH ₂ =CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	-	2	THF, -78°	HO 0 (72) ⁴	449
			•	THF, -78° to 0°	(60)	449
	C ₆ H ₃ CHOHCN ⁶ C ₆ H ₃ CDOHCN ⁶	С,н,сно	KCN	с,н,он	$C_{6}H_{5}COCHOHC_{6}H_{5}$ (-) " (-)	432 432
	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	Ů	LDA	THF, -70° to 100°	(CH ₃ ),510 (71) ⁴	449,45
111		Ô	•	•	(CH ₃ ) ₃ SiO 0 (64)*	449,4
	CH ₂ =CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	n-C ₅ H ₁₁ COCH ₃	•	THF, 78°	(CH ₃ ) ₃ SiO O n-C ₃ H ₁₁ (76)*	449
			-	THF, -78° to 0°	A-C.H. XOLO (43)	449
		Ĵ,			(CH ₃ ),sio	114
	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	$\bigcirc$	•	THF, -70° to -100°	(f) (44),	449
		(~po			(CH ₃ ) ₃ SiO O	
		$\mathbf{X}$		•	(S4)*	449
		<u> </u>			$\mathbf{\hat{C}}$	

TABLE XV. ADDITION OF ANIONS OF PROTECTED CYANOHYDRINS TO ALDEHYDES, KETONES, AND OLEFINS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
Cs (Conid.)		С4н,сосн,	LDA	THF, -70° to -100°	$(CH_3)_3SiO O \\ \downarrow \\ C_6H_3 $ (69)*	449,453,906
		Isophorone	-	•	(CH ₃ ) ₃ SiO O (53)*	449,453
		C ₆ H ₅ (CH ₂ ) ₂ CHO	Ċ	•	$(CH_3)_3SiO$ $C_6H_3(CH_2)_2$ $(47)^4$ $(CH_3)SiO$	449
		x				
		0	•	•	× 1 X = H (78)* I X = OCH ₃ (89)*	449,453
			-	•	(CH ₃ ) ₃ SiO O (70)*	449,906
					(CH ₃ ) ₃ SiO COCH=CHCH ₃	
		Cyclododecanone	•	•	(30)*	449
	CH2=CHCH(CN)OCH(OC2H3)CH3		•	• THF, –78°	HO 0 (80)	449
			•	THF, - 78° to 0°	(60)	449
	CH3CH=CHCH(CN)OCH(OC2H3)CH3	Ċ		THF, 0°	HO O (-)'	449
	CH2=C(CH3)CH(CN)OCH(OC2H3)CH		•	THF, -78°	HO 0 (83)	449
			•	THF, - 78° to 0°	(65)	449
	CH3CH=CHCH(CN)OCH(OC3H3)CH3	СНО		THF, 0⁰	OH (69)*	449

TABLE XV. ADDITION OF ANIONS OF PROTECTED CYANOHYDRINS TO ALDEHYDES, KETONES, AND OLEFINS (Continued)

r C	No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
1			Ŷ			но О	
0	Conid.)		$\mathbf{Q}$	LDA	THF, 0°	1-C4H9 (56)*	449
		CH-=CHCH(CN)OSi(C.H.).	CH.COCH.		THF 78°	CH.=CHCOC(CH.), OSi(C.H.), (76)*	906
280	-10	C.H.CH(CN)OSi(CH.)	сн.сно		DME -78°	C.H.COCHIOSICH.). JCH. (98)	447.448
	-11	consenter outen 3/3	C,H,CHO		"	C_H_COCH[OSi(CH_)]C_H_ (91)*	447,448
			CH,COCH,			C6H3COC[OSi(CH3)3](CH3)2 (98)*	447,448
			i-C3H7CHO	-		C6H3COCH[OSi(CH3)3]C3H7-i (100)"	447,448
			I-C4H9CHO			C ₆ H ₅ COCH(OSi(CH ₃ ) ₃ )C ₄ H ₉ -t (96) ⁴	447,448
			0			C6H3CO_OSi(CH3)3	
			$\bigcirc$			(98)"	447,448
			0			C ₆ H ₅ CO ₂ OSi(CH ₃ ) ₃	
			$\bigcirc$	•	-	(100)*	447,448
			$CH_2 = CH_2,$ PdCl ₂ (CH ₃ CN) ₂ ,	-	тнг, нмра	C ₆ H ₃ COCH ₂ CH ₂ CO ₂ CH ₃ (50) ^e	907
			CO, CH ₃ OH		10,000,000,000	teast a service balance and a service and a service of	1.00
		CH ₂ =C(CH ₃ )CH(CN)OSi(C ₂ H ₃ ) ₃ C ₆ H ₃ CH(CN)OSi(CH ₃ ) ₃	r-C₄H₄CHO C₄H₄COCH₃	:	THF, -78° DME, -78°	$CH_2 = C(CH_3)COCH(C_4H_9 + t)OSi(C_2H_3)_3$ $C_6H_5COC[OSi(CH_3)_3](CH_3)C_6H_5  (100)^{\circ}$	906 447,448
			Q			(CH.).SiO COC.H.	
			~			(englished and a second	
						(-)*	448
			Y			Y	
			C4H9-1			C4H9-1	
			C6H5COC6H5			C ₆ H ₅ COC[OSi(CH ₃ ) ₃ ](C ₆ H ₅ ) ₂ (98) ⁴	447,448
c	C14		сн₃сно	K2CO3	r-C₄H₀OH	2-C ₅ H ₄ NCOCH(O ₂ CC ₆ H ₅ )CH ₃ (72) ⁴	443
		CH(CN)O ₂ CC ₆ H ₅	1.1.1			the second second second second	
C	-15	4-XC6H4CH(CN)O2CC6H5		* ~~~		4-XC ₆ H ₄ COCH(O ₂ CC ₆ H ₅ )CH ₃ I ^e	443
				K2CO3	I-CAHOH	1 X = H (59)	443
				K CO.	CH OH	I X = N (-)	443
				"	"	I X = CI (18)	443
		C6H3CH(CN)O2CC6H3	C2H3CHO			CaH COCH(O, CCaH, C.H. (46)	443
			I-C,H,CHO		-	C6H3COCH(O2CC6H3)C3H7-i (37)4	443
N				KCN	DMF	C4H4COCH(C4H4O-2)O4CC4H4 (-)*	444
-			.0. CHO				
			C ₆ H ₅ CHO	- <b>*</b> -		$C_6H_5COCH(C_6H_5)O_2CC_6H_5$ (-)"	444
C	516	4-XC ₆ H ₄ CH(CN)O ₂ CC ₆ H ₅	сн²сно	K ₂ CO ₃	ŀ-C₄H9OH	$4-XC_6H_4COCH(O_2CC_6H_5)CH_3  I^4$ I X = OCH_3 (14) I X = CN (52)	443

TABLE XV. ADDITION OF ANIONS OF PROTECTED CYANOHYDRINS TO ALDEHYDES, KETONES, AND OLEFINS (Continued)

The initial product underwent an intramolecular 1,4-0,0-trimethylsilyl group migration and expelled cyanide.
The cyanohydrin was generated *in situ* from the corresponding aldehyde.
The initial product was hydrolyzed.
The initial product underwent an intramolecular benzoyl group migration.

No. of C Atoms

C6

c,

#### **REACTIONS OF NITRILE-STABILIZED CARBANIONS**

PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS

Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
2-Furyiglycolonitrile ⁴	CH2=CHCN	NaCN	DMF or DMSO	(2-C4H3O)CO(CH2)2CN (63-68)
2-Thienylglycolonitrile*		•	DMF	(2-C4H3S)CO(CH2)2CN (85)
2-Furylglycolonitrile*	CH ₃ CH=CHCN		•	(2-C4H3O)COCH(CH3)CH2CN (
	$CH_2 = C(CH_3)CN$			(2-C4H3O)COCH2CH(CH3)CN (
2-Thienylglycolonitrile*	CH ₂ =CHCOCH ₃			(2-C4H3S)CO(CH2)2COCH3 (80)
	CH ₃ CH=CHCN	2		(2-C4H3S)COCH(CH3)CH2CN (7
	CH ₂ =CHCO ₂ C ₂ H ₅	2		(2-C4H3S)CO(CH2)2CO2C2H3 (50
	CH ₃ CH=CHCO ₂ C ₂ H ₅			(2-C4H3S)COCH(CH3)CH2CO2C2
	CH2=CHCO-	•		(2-C ₄ H ₃ S)CO(CH ₂ ) ₂ CO(C ₄ H ₃ S-2)
	C ₆ H ₃ CH=CHCN			(2-C4H3S)COCH(C6H3)CH2CN (
2-Furylglycolonitrile*	C ₆ H ₅ CH=CHCN			(2-C4H3O)COCH(C6H5)CH2CN
	C ₆ H ₃ CH=CHCO ₂ CH ₃		DMF or DMSO	(2-C4H3O)COCH(C6H5)CH2CO2C
	C ₆ H ₅ CH=CHCOCH ₃		DMF	(2-C4H3O)COCH(C6H3)CH2COCH
	Lorenco Lor	•	•	(2-C4H3O)COCH(C4H3O-2)CH2C
	CH=CHCOC,H,		-	(2-C4H3O)COCH(C4H3O-2)CH2C
	C.H.CH=CHCOC.H.	•		C H OYCOCHIC H YCH COC
2-Thienylglycolonitrile*	C6H,CH=CHCOCH,	-		(2-C ₄ H ₃ S)COCH(C ₆ H ₃ )CH ₂ COCH
	C ₆ H ₅ CH=CHCO	•		(2-C4H3S)COCH(C6H3)CH2CO(C4
	C ₆ H ₃ CH=CHCOC ₆ H ₃		•	(2-C4H3S)COCH(C6H3)CH2COC6
CHOHCN"	CH ₂ =CHCN	-	·•	(3-C ₃ H ₄ N)CO(CH ₂ ) ₂ CN (89)
0	CH2=CHCN			(4-C ₃ H ₄ N)CO(CH ₂ ) ₂ CN (71)
CH3 CHOHCN"		•	÷	CH ₃ CO(CH ₂ ) ₂ CN (60)
	CH ₂ =CHCOCH ₃	•	•	(4-C ₃ H ₄ N)CO(CH ₂ ) ₂ COCH ₃ (70)
CHOHCN*	-	-		(3-C ₅ H ₄ N)CO(CH ₂ ) ₂ COCH ₃ (88)
	CH ₂ =CHCO ₂ C ₂ H ₅	•		(3-C ₃ H ₄ N)CO(CH ₂ ) ₂ CO ₂ C ₂ H ₃ (37
CH3CH(CN)OCH(OC2H3)CH3				

85) 440,434,435,437,438 2CN (73) 442,437 )CN (62) 437 3 (80) 438 CN (76) 438,437 H, (50) 439,437 2CO2C2H3 (54) 439,437 H3S-2) (75) 438 2CN (71) 438,437 12CN (68) 442,437 12CO2CH3 (44) 434 2COCH3 (72) 436,437,440 2)CH2CO(C4H3O-2) (45) 441,437 2)CH2COC6H3 (61) 441,437 12COC6H, (93) 436,434,437,440 2COCH3 (77) 438 2CO(C4H3S-2) (80) 438,437 2COC.H. (90) 438,437 (89) 440,434,435,437 (71) 440,434,435,437 (60) 438,437 436,437 3 (70) 3 (88) 436,437 H, (37) 439,437

I, C₂H₃)CH₃ (OC,H,)CH, п

442,434,435,437,440

Refs.

#### ORGANIC REACTIONS

#### **REACTIONS OF NITRILE-STABILIZED CARBANIONS**

TABLE XVI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF ANIONS OF

PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
		0				
C.	CH.CH(CN)OCH(OC.H.)CH.	<u> </u>	LDA	THF. HMPA78°	I:II = 40:60 (-)	450
(Contd.)					I:II = 50:50 (75)	446
Constant of		$\sim$		THF, HMPA, -70°	I:II = 20:80 (>95)	908
		ŭ				
	CH ₃ CH(CN)OCH(OC ₂ H ₃ )CH ₃	Ω	•	THF, HMPA, -78°	I (90)	450
		~`			C(CH ₃ )(CN)OCH(OC ₂ H ₃ )CH ₃	
			•	- <u>-</u>	I. (70, I:II = 90:10)	446
		Ŷ			C(CH3)(CN)OCH(OC3H3)CH3	
		$\bigcirc$		THF, HMPA, 78°	Ч ш	450
					HO $C(CH_3)(CN)OCH(OC_2H_3)CH_3$ IV III:IV = 6:1 (-)	)
		C ₆ H ₃ CH=CHNO ₂	-		CH ₃ C[CH(C ₆ H ₃ )CH ₂ NO ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃ (55-85)	909
		Isophorone		THF. HMPA 70° to 0°	1 to	908
	CHOHCM				I:II = 80:20 (>95)	
	Chonen-	CH2=CHCOC6H3	NaCN	DMF	(3-C ₅ H ₄ N)CO(CH ₃ ) ₂ COC ₆ H ₅ (80)	436,437
	CH3CH(CN)OCH(OC1H3)CH3		LDA	THF, HMPA, -70°	с така с	908
		0~~~~			O ^C (CH ₃ )(CN)OCH(OC ₂ H ₃ )CH ₃	
					HO $(CH_3)(CN)OCH(OC_2H_3)CH_3$ II I:II = 50:50 (>95)	
		C ₆ H ₃ CH=CHCOC ₆ H ₃	NaCN	DMF	(2-C ₅ H ₄ N)COCH(C ₆ H ₅ )CH ₂ COC ₆ H ₅ (91)	436
	" CHOHCN"	C4H3COCH2CH2N(CH3)2	-	÷	(3-C ₅ H ₄ N)CO(CH ₂ ) ₂ COC ₆ H ₅ (35)	440
	CHOHCN*	<b>Со</b> сн=снсо-Со	•	-	(3-C ₃ H ₄ N)COCH(C ₄ H ₃ O-2)CH ₂ CO(C ₄ H ₃ O-2) (88)	441,437
		Ch-ch-chco CN	-	-	(3-C ₅ H ₄ N)COCH(C ₄ H ₃ O-2)CH ₂ CO(C ₃ H ₄ N-3) (56)	441

#### ORGANIC REACTIONS

TABLE XVI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF ANIONS OF

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	
C, (Contd.)	СНОНСМ*	C ₆ H ₃ CH=CHCO	NaCN	DMF	
(20,112.)	™.	CH=CHCOC6H,	1 - <b>1</b> - 7		
		CH=CHCO			
		CH=CHCOC ₆ H,			
		COCH=CHC ₆ H,			
	CHOHCN.	C ₆ H ₃ CH=CHCOC ₆ H ₃	•	DMF or DMSO	
		CH=CHCOC.H.	•	DMF	
C.	C.H.CHOHCN*	CH-=CHCN			
÷.	4-CIC H4CHOHCN				
	4-BrC, H, CHOHCN	•			
	C6H3CHOHCN ⁴	CH ₂ =C(CH ₃ )CN			
		CH ₃ CH=CHCN			
		CH ₂ =CHCOCH ₃			
	4-CIC6H4CHOHCN ^e			-	
	C6H3CHOHCN"	$CH_2 = CHCO_2C_2H_3$		•	
	4-CIC6H4CHOHCN*	CH ₃ CH=CHCO ₂ CH ₃			
		$CH_2 = CHCO_2C_2H_3$			
	CH_CH=CHCH(CN)OSi(CH_)	(CH_)_C=CHCOCH	IDA	THE	
		"	"	Et ₂ O	
		O II			
		$\bigcirc$		THF	
	C6H3CHOHCN" 4-CIC6H4CHOHCN"	CH ₃ CH=CHCO ₂ C ₂ H ₅	NaCN	DMF	
		$CH_2 = C(CH_3)CO_2C_2H_5$		•	
	C6H3CHOHCN*	CH3CH=CHCO2C3H7-i			
	4-CIC6H4CHOHCN*	· · · · · · · · · · · · · · · · · · ·		•	
	C ₆ H ₃ CHOHCN [•]	CH ₃ CH=CHCO ₂ C ₄ H ₉ -t			
		$(Z)-C_2H_5O_2CCH=CHCO_2C_2H_5$			
	4-CIC6H4CHOHCN"	CH ₃ CH=CHCO ₂ C ₄ H ₉ -r		-	
	CH ₃ CH=CHCH(CN)OSi(CH ₃ ) ₃	Isophorone	LDA	THF	
	C6H3CHOHCN*	C ₆ H ₅ COCH=CH ₂	NaCN	DMF	
		C ₆ H ₃ CH=CHCOCH ₃			

#### REACTIONS OF NITRILE-STABILIZED CARBANIONS

PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)

tion Conditions	Product(s) and Yield(s) (%)	Refs.
•	(3-C ₅ H ₄ N)COCH(C ₆ H ₃ )CH ₂ CO(C ₄ H ₃ O-2) (80)	441,437
	(3-C ₅ H ₄ N)COCH(C ₄ H ₃ O-2)CH ₂ COC ₆ H ₅ (73)	437.441
	(3-C ₅ H ₄ N)COCH(C ₅ H ₄ N-3)CH ₂ CO(C ₅ H ₄ N-3) (74)	441,437
	(3-C ₅ H ₄ N)COCH(C ₅ H ₄ N-3)CH ₂ COC ₆ H ₅ (83)	441,437
	(3-C ₅ H ₄ N)COCH(C ₆ H ₅ )CH ₂ CO(C ₅ H ₄ N-3) (72)	441,437
or DMSO	(2-C ₅ H ₄ N)COCH(C ₆ H ₅ )CH ₂ COC ₆ H ₅ (91)	437,434
	(2-C₃H₄N)COCH(C₅H ₆ N-2)CH₂COC ₆ H ₅ (63)	441
	$C_{6}H_{5}CO(CH_{2})_{2}CN (80)$ $4-CIC_{6}H_{4}CO(CH_{2})_{2}CN (89-91)$ $4-BrC_{6}H_{4}CO(CH_{2})_{2}CN (81)$ $C_{6}H_{5}COCH_{2}CH(CH_{3})CN (73)$ $C_{6}H_{5}COCH(CH_{3})CH_{2}CN (71)$ $C_{6}H_{5}CO(CH_{2})_{2}COCH_{5} (82)$ $4-CIC_{6}H_{4}CO(CH_{2})_{2}COCH_{5} (98)$ $C_{6}H_{5}CO(CH_{2})_{2}CO_{2}C_{1}H_{5} (55)$ $4-CIC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}CH_{5} (35)$ $4-CIC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}CH_{5} (35)$ $4-CIC_{6}H_{4}COCH_{2}CH(CH_{3})CO_{2}CH_{5} (34)$ $(CH_{3})_{2}C=CHC(CH_{3})[OSi(CH_{3})_{3}]COCH=CHCH_{5} (74)$ $CH_{5}COCH_{2}C(CH_{5})COCHCH(CH_{5})CH_{5}CH_{5} (25-60)$	435,437,440 440,435,437 440,435,437 440,435,437 436,437,440 436,437,440 439,437 439,437 439,437 439,437 439,437 906 906
	$ \begin{array}{c} \hline C(CH=CHCH_{3})(CN)OSi(CH_{3})_{3} (72) \\ C_{6}H_{3}COCH(CH_{3})CH_{2}CO_{2}C_{2}H_{3} (36) \\ 4-ClC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}C_{2}H_{3} (56) \\ 4-ClC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}C_{2}H_{3} (34) \\ C_{6}H_{3}COCH(CH_{3})CH_{2}CO_{2}C_{3}H_{7}-i (40) \\ 4-ClC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}C_{3}H_{7}-i (49) \\ C_{6}H_{3}COCH(CH_{3})CH_{2}CO_{2}C_{3}H_{7}-i (52) \\ C_{6}H_{3}COCH(CO_{2}C_{2}H_{3})CH_{2}CO_{2}C_{2}H_{3} (33) \\ 4-ClC_{6}H_{4}COCH(CO_{2}C_{2}H_{3})CH_{2}CO_{2}C_{2}H_{3} (35) \\ 4-ClC_{6}H_{4}COCH(CH_{3})CH_{2}CO_{2}C_{4}H_{9}-t (64) \\ (CH_{3})_{3}SiO \\ \hline \end{array} $	440,439 440,437,439 439,437 437,439 439,437 440 440 439,437 906
	(C ₆ H ₃ COCH ₂ ) ₂ (66) C ₆ H ₃ COCH(C ₆ H ₄ )CH ₂ CN (80) C ₆ H ₄ COCH(C ₆ H ₄ )CH ₂ COCH ₃ (80)	440 440,435,437 436,437,440

C,

#### ORGANIC REACTIONS

TABLE XVI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF ANIONS OF

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)
C.	C6H3CHOHCN"	C ₆ H ₃ CN=CHCOCH ₃	NaCN or KCN NaCN	DMSO DMF	" (69) 4-CIC_H_COCH(C_H_)CH_COCH,
(,	C.H.CHOHCN*	C ₆ H ₃ CH=CHCO ₂ C ₂ H ₃ C ₆ H ₃ COCH ₂ CH ₂ N(CH ₃ ) ₂			C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO ₂ C ₂ H ₃ (5 (C ₆ H ₃ COCH ₂ ) ₂ (61)
		( CH=CHCO	-	-	C6H3COCH(C4H3O-2)CH2CO(C4H30
	4-CIC6H4CHOHCN*	C ₆ H ₃ CH=CHCO ₂ C ₂ H ₃	i ches	16	4-CIC ₆ H ₄ COCH(C ₆ H ₅ )CH ₂ CO ₂ C ₂ H ₅
	C ₆ H ₃ CHOHCN ⁴	CH=CHCO N			C ₆ H ₃ COCH(C ₄ H ₃ O-2)CH ₂ CO(C ₅ H ₄ )
		CH=CHCOC.H,			C6H3COCH(C4H3O-2)CH2COC6H3
		CH=CHCO N	- 5		C ₆ H ₅ COCH(C ₅ H ₄ N-3)CH ₂ CO(C ₅ H ₄ )
		C ₆ H ₃ CH=CHCO	+		C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₄ H ₃ S-2)
		C4H4CH=CHCO	C. • C		C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₄ H ₃ O-2)
	4-CIC ₆ H ₄ CHOHCN ^e	C ₆ H ₅ CH=CHCO ₂ C ₆ H ₅ -1		•	4-CIC ₆ H ₄ COCH(C ₆ H ₃ )CH ₂ CO ₂ C ₄ H ₉
	C ₆ H ₅ CHOHCN ⁴	N Ch-Checken,	-		C ₆ H ₃ COCH(C ₅ H ₄ -3)CH ₂ COC ₆ H ₅ (i
		COCH=CHC ₄ H,			C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₅ H ₄ N-3)
		CAHACH=CHCOCAHA			C.H.COCH(C.H.)CH.COC.H. (93
	4-CIC ₆ H ₄ CHOHCN*				4-CIC ₆ H ₄ COCH(C ₆ H ₃ )CH ₂ COC ₆ H ₃
	C.H.CHOHCN*	CH=CHCOC.H.		÷	C ₆ H ₃ COCH(C ₉ H ₆ N-2)CH ₂ COC ₆ H ₃
C.	3-CH-C.H.CHOHCN*	CH,=CHCN	1 A	14 C	3-CH-C-H-CO(CH-)-CN (47)
	3-CH,OC,H,CHOHCN		•		3-CH1OC4H4CO(CH2)2CN (83)
	4-CH3C6H4CHOHCN*	•			4-CH3C6H4CO(CH2)2CN (43-70)
	4-CH ₃ OC ₆ H ₄ CHOHCN [*] (CH ₃ ) ₅ C=CHCH(CN)OSi(CH ₃ ) ₅	" CH ₂ =CHCO ₂ C ₂ H ₃	LDA	" THE -78°	4-CH ₃ OC ₆ H ₄ CO(CH ₂ ) ₂ CN (54-60) (CH ₂ ) ₂ C=CHC[(CH ₂ ) ₂ CO ₂ C ₂ H ₂ ](Cl
		0			0
	CH3CH=CHCH(CN)OCH(OC2H3)CH3	Å	•	THF, HMPA, -78°	
	(CH ₃ ) ₂ C=CHCH(CN)OSi(CH ₃ ) ₃ CH ₃ CH=CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	CH ₃ CH=CHCO ₃ C ₂ H ₃ (CH ₃ ) ₂ C=CHCOCH ₃		THF THF, HMPA, —78°	(CH ₃ ) ₂ C=CHC[CH(CH ₃ )CH ₂ CO ₂ C ₂ (CH ₃ ) ₂ C=CHC[CH(CH ₃ )CH ₂ CO ₂ C ₂ CH ₃ CH=CHC[C(CH ₃ ) ₂ CH ₂ COCH ₃ ] (70-80)
		Ċ			

#### REACTIONS OF NITRILE-STABILIZED CARBANIONS

PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)

ion Conditions	Product(s) and Yield(s) (%)	Refs.
0	" (69)	440
	4-CIC+H+COCH(C+H+)CH+COCH+ (98)	436,437,440
	C.H.COCH(C.H.)CH,CO,C.H. (54)	437,440
	(C ₆ H ₃ COCH ₂ ) ₂ (61)	440
	C ₆ H ₃ COCH(C ₄ H ₃ O-2)CH ₂ CO(C ₄ H ₃ O-2) (75)	441
	4-CIC ₆ H ₄ COCH(C ₆ H ₃ )CH ₂ CO ₂ C ₂ H ₃ (54)	439
	C ₆ H ₃ COCH(C ₄ H ₃ O-2)CH ₂ CO(C ₅ H ₄ N-3) (53)	441
	C ₆ H ₃ COCH(C ₄ H ₃ O-2)CH ₂ COC ₆ H ₃ (73)	441,437
	C ₆ H ₃ COCH(C ₃ H ₄ N-3)CH ₂ CO(C ₃ H ₄ N-3) (48)	441,437
	C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₄ H ₃ S-2) (75)	441,437
	C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₆ H ₃ O-2) (78)	441
	4-CIC ₆ H ₄ COCH(C ₆ H ₃ )CH ₂ CO ₂ C ₄ H ₉ -r (60)	439,437
	C ₆ H ₃ COCH(C ₅ H ₄ -3)CH ₂ COC ₆ H ₅ (87)	441,437
	C ₆ H ₃ COCH(C ₆ H ₃ )CH ₂ CO(C ₃ H ₄ N-3) (65)	441
	CaHaCOCH(CaHa)CHaCOCaHa (93)	436,437
	4-CIC ₆ H ₄ COCH(C ₆ H ₅ )CH ₂ COC ₆ H ₅ (98)	436,437,440
	C ₆ H ₃ COCH(C ₉ H ₆ N-2)CH ₂ COC ₆ H ₅ (48)	441
	3-CH ₃ C ₆ H ₄ CO(CH ₂ ) ₂ CN (47)	437
	3-CH ₃ OC ₆ H ₄ CO(CH ₂ ) ₂ CN (83)	437
	4-CH ₃ C ₆ H ₄ CO(CH ₂ ) ₂ CN (43-70)	440,437
	4-CH ₃ OC ₆ H ₄ CO(CH ₂ ) ₂ CN (54-60)	440,437
- 78°	(CH ₃ ) ₂ C=CHC[(CH ₂ ) ₂ CO ₂ C ₂ H ₃ ](CN)OSi(CH ₃ ) ₃ (15) O	906
HMPA 78°	(71)	450,446
	C(CH=CHCH ₃ )(CN)OCH(OC ₂ H ₃ )CH ₃	
	$(CH_3)_2C = CHC[CH(CH_3)CH_2CO_2C_2H_3](CN)OSi(CH_3)_3$ (76)	906
HMPA, —78°	CH ₃ CH=CHC[C(CH ₃ ) ₂ CH ₂ COCH ₃ ](CN)OCH(OC ₂ H ₃ )CH ₃ (70-80) O	911
	СN (77)	450,446
	OCH(OC ₂ H ₂ )CN ₃	

-

#### ORGANIC REACTIONS

TABLE XVI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF ANIONS OF

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Y
c.	(CH ₃ ) ₂ C=CHCH(CN)OSi(CH ₃ ) ₃	CICH ₂ CH=C(CH ₃ )CO ₂ C ₂ H ₃	LDA	THF	CH3 CO2C2H
(Contd.)					Сссн
	CH ₃ CH=CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	C ₆ H ₃ CH=CHNO ₂		THF, HMPA, -78°	CH ₃ CH=CHC (55-85)
	(CH ₃ ) ₂ C=CHCH(CN)OSi(CH ₃ ) ₃	C ₆ H ₅ CH=CHCO ₂ C ₂ H ₅	-	THF	(CH ₃ ) ₂ C=CHC
	CH ₃ CH=CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	C ₆ H ₅ CH=CHCOC ₆ H ₅		THF, HMPA, -78°	C ₆ H,
C10	n-C4H9CH(CN)OCH(OC2H3)CH3	C ₆ H ₃ CH=CHNO ₂	-	÷	n-C ₄ H ₉ C[CH(C
	CH(CN)OCH(OC,H,)CH,	•			CICHIC
	i-C ₄ H ₉ CH(CN)OCH(OC ₂ H ₃ )CH ₃	(E)-CH ₂ =C(CH ₃ )CH=CHS(O)C ₆ H ₅		THF, -78°	i-C.H.CO
		9 L			Ŷ
C ₁₁	n-C ₅ H ₁₁ CH(CN)OCH(OC ₂ H ₅ )CH ₃	$\bigcirc$		THF. HMPA, —78°	
	C, H, CH(CN)OSi(CH,),	(CH ₃ ) ₂ C=CHCOCH ₃	-	-1	C.H.COCICH.)
					C6H5C(CN)[(
		0	•	DME Et ₂ O	I:II = 78:22 (9 I:II = 0:100 (8
		1			Ĭ.
		$\cup$		$Et_2O, -78^\circ$	C) C(C,H.)
		CH ₃ CH=CHCO ₂ C ₂ H ₃	-	THF or Et ₂ O	C.H.COCH(CH
	4-CIC ₆ H ₄ CH(CN)OSi(CH ₃ ) ₃	$(CH_3)_2C=CHCO_2CH_3$ $(CH_3)_2C=CHCOCH_3$		•	C ₆ H ₃ COC(CH ₃ ) 4-ClC ₆ H ₄ COC(C
				DME	$4-CIC_6H_4C(CI)$ I:II = 62:38 (10
		0	•	Et ₂ O	I:II = 0:100 (9
	C ₆ H ₃ CH(CN)OSi(CH ₃ ) ₃	$\square$		Et ₂ O, -78°	
		Ŷ			0
		↓ Br	•	5 <b>*</b> 5	Coc
		<u>Å</u>			0008
					" (90) [*]

#### REACTIONS OF NITRILE-STABILIZED CARBANIONS

PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)

n Conditions	Product(s) and Yield(s) (%)	Refs.
	CH ₃ CO ₂ C ₂ H ₃	
	(71)	906
HMPA, - 78°	CH ₃ CH=CHC[CH(C ₆ H ₃ )CH ₂ NO ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃	909
	$(CH_3)_2C=CHC(CN)[OSi(CH_3)_3]CH(C_6H_5)CH_2CO_2C_2H_5$ (59) $O_{c_6H_5}$	906
IMPA, -78°	C ₆ H ₅ (85) NC OCH(OC ₂ H ₃ )CH ₃	450,446
	n-C ₄ H ₉ C[CH(C ₆ H ₃ )CH ₂ NO ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃ (55-85)	909
	C[CH(C ₆ H ₅ )CH ₂ NO ₂ ](CN)OCH(CH ₃ )OC ₂ H ₅ (55-85)	909
- 78°	$i-C_4H_9CO_{(50, E:Z = 55:45)^b}$	458
NDA 700	Ŷ,	
MPA, - /8"	$C(C_{3}H_{11}-n)(CN)OCH(OC_{2}H_{3})CH_{3}$	
	HO_C(C ₃ H ₁₁ -n)(CN)OCH(OC ₂ H ₃ )CH ₃	
	П,	450
	(-, ratio I:II = 2.7:1)	
	$C_6H_5COC(CH_3)[OSi(CH_3)_3]CH=C(CH_3)_2$ I, C H C(CN)[OSi(CH_3)_3C(CH_3)_CH_COCH_1]	
	I:II = 78:22 (92)	912
	I:II = 0:100 (84)	912
	о П	
- 78°	(96)	913
F: 0		012
El ₂ O	$C_{4}H_{4}COC(CH_{4})CH_{4}CO_{2}C_{2}H_{4}$ (65)	913
	$4-ClC_6H_4COC(CH_3)[OSi(CH_3)_3]CH=C(CH_3)_2$ I,	103
	4-CIC ₆ H ₄ C(CN)[OSi(CH ₃ ) ₃ ]C(CH ₃ ) ₂ CH ₂ COCH ₃ II	
	I:II = 62:38 (100)	912
	0 0	912
· 78°	(83)*	913
	O COC6H3	
	(40)*	913
	tococ, H,	

	TABLE XVI. 1	,2-Addition and 1,4-Addition Read	TIONS OF ANIONS OF	PROTECTED CYANOH	YDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)	
No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₁ (Contd.)	C ₆ H ₃ CH(CN)OSi(CH ₃ ),	, ,	LDA	Et ₂ O, -78°	C(C ₆ H ₅ )(CN)OSi(CH ₃ ) ₃ (95)	913
				•	Сос, н, (45)*	913
		Č	-	-	(20)*	913
		(E)-C ₆ H ₅ CH=CHCOCH ₃			$C_6H_5C(CN)[OSi(CH_3)_3]CH(C_6H_5)CH_2COCH_3$ (87)	913
		0	•			913
		(E)-C,H,CH=CHCO,CH,		THE or Ft.O	$C_{1}H_{2}COCH(C_{2}H_{2})CH_{2}CO_{2}H_{2}(75)$	913
C12	C ₆ H ₅ CH(CN)OCH(OC ₂ H ₅ )CH ₃	СН2=СНСНО	-	-	C ₆ H ₅ C(CN)[(CH ₂ ) ₂ CHO]OCH(OC ₂ H ₃ )CH ₃ (90)	446
	CHOHCN-	CH2=CHCN	NaCN	DMF	2-C10H7CO(CH2)2CN (81)	440,436,437
	C ₆ H ₃ CH(CN)OCH(OC ₂ H ₃ )CH ₃	(CH ₃ ) ₂ C=CHCOCH ₃ O	LDA	-	C ₆ H ₃ C(CN)[OCH(OC ₂ H ₃ )CH ₃ ]C(CH ₃ ) ₂ CH ₂ COCH ₃ (88) O	446
		$\bigcirc$		THF	(>95) C(C4H4)(CN)OCH(OC3H4)CH4	908
	4-CF ₃ C ₆ H ₄ CH(CN)OSi(CH ₃ ) ₃	(CH ₃ ) ₂ C=CHCOCH ₃	-		4-CF ₃ C ₆ H ₄ COC(CH ₃ )[OSi(CH ₃ ) ₃ ]CH=C(CH ₃ ) ₂ I, 4-CF ₃ C ₆ H ₄ C/CN)[OSi(CH ₃ ) ₃ ]CH=C(CH ₃ ) ₂ I,	
			÷.	DME	I:II = 28:72 (100)	912
	4-CH3OC6H4CH(CN)OSi(CH3)3	÷		Et ₂ O	I:II = 0:100 (92) 4-CH ₃ OC ₆ H ₄ COC(CH ₃ )[OSi(CH ₃ ) ₃ ]CH=C(CH ₃ ) ₂ I 4-CH ₂ OC ₆ H ₄ C(CN)[OSi(CH ₃ ) ₃ ]CH=C(CH ₃ ) ₂ I	912
			-	DME	I:II = 95:5 (95)	912
	Carlo a construction of the second	4		Et ₂ O	1:11 = 30:70 (91)	912
	4-NCC ₆ H ₄ CH(CN)OSi(CH ₃ ) ₃	-			$4 \cdot \text{NCC}_6 \text{H}_4 \text{COC}(\text{CH}_3) [\text{OSi}(\text{CH}_3)_3] \text{CH} = \text{C}(\text{CH}_3)_2 \text{ I},$	
			<b>H</b> -	DME	I:II = 0:100 (95)	912
			•	Et ₂ O	I:II = 0:100 (96)	912
	C ₆ H ₃ CH(CN)OCH(OC ₂ H ₃ )CH ₃	C ₆ H ₃ CH=CHNO ₂		THF, HMPA, -78°	$C_6H_5C[CH(C_6H_5)CH_2NO_2](CN)OCH(OC_2H_5)CH_3$ (55-85)	909
		Isophorone		THF	(>95) C(C ₆ H ₃ )(CN)OCH(OC ₂ H ₄ )CH ₃	908
			. 1	-	$O = C(C_4H_4)(CN)OCH(OC_3H_4)CH_4 $ (>95)	908

292

#### TABLE XVI. 1,2-ADDITION AND 1,4-ADDITION REACTIONS OF ANIONS OF

# REACTIONS OF NITRILE-STABILIZED CARBANIONS

### PROTECTED CYANOHYDRINS TO VARIOUS MICHAEL ACCEPTORS (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C13	n-C ₅ H ₁₁ CH=CHCH(CN)OCH(CH ₃ )OC ₂ H ₃	$\overset{\bullet}{\bigcirc}$	LDA	THF, HMPA, —78°	С ₉ Н ₁₁ - <i>п</i> (3) ⁴ ,	914
					$C_{3}H_{11}-\pi$	
	4-(CH ₃ ) ₂ NC ₆ H ₄ CH(CN)OSi(CH ₃ ) ₃	(CH ₃ ) ₂ C=CHCOCH ₃			4-(CH ₃ ) ₂ NC ₆ H ₄ COC(CH ₃ )[OSi(CH ₃ ) ₃ ]CH=C(CH ₃ ) ₂ I, 4-(CH ₃ ) ₂ NC ₆ H ₄ C(CN)[OSi(CH ₃ ) ₃ ]C(CH ₃ ) ₂ CH ₂ COCH ₃ II	
			•	DME	I:II = 100:0 (96)	912
	and the second second second second second second		-	Et ₂ O	I:II = 86:14 (99)	912
	4-CH ₃ C ₆ H ₄ CH(CN)OCH(CH ₃ )OC ₂ H ₃			THF, -78°	$4-CH_3C_6H_4C[COH(CH_3)CH=C(CH_3)_2](CN)OCH(CH_3)OC_2H_3$ (70)	915
	n-C ₅ H ₁₁ CH=CHCH(CN)OCH(OC ₂ H ₃ )CH ₃	C ₆ H ₃ CH=CHNO ₂	-	THF, HMPA, -78°	n-C ₃ H ₁₁ CH=CHC[CH(C ₆ H ₃ )CH ₂ NO ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃ (55-85)	909
	$\bigcirc$	HO	NaH	DMSO	COC _e H _s	916a
	C ₆ H ₃ CH(CN)0 ¹⁰	F				
C14	2-(CH ₃ OCH ₂ O)C ₆ H ₄ CH(CN)OCH(OC ₂ H ₃ )CH ₃	C ₆ H ₃ CH=CHNO ₂	LDA	THF, HMPA, -78°	2-(CH ₃ OCH ₂ O)C ₆ H ₄ C[CH(C ₆ H ₃ )CH ₂ NO ₂ ](CN)OCH(OC ₂ H ₃ )CH ₃ (55-85)	909

" The cyanohydrin was generated in situ from the corresponding aldehyde.

* The initial product was hydrolyzed.

294

'The initial product was treated with (CH3)3SiCl and/or bis(trimethylsilyl)acetamide.

⁴ The enolate was trapped with  $ICH_2C \equiv C(CH_2)_3CO_2CH_3$ , and the initial product was hydrolyzed, converted to its ethylene ketal, and exposed to base.

296	No. of C Atoms	Nucleophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	C,	CI(CH ₂ ) ₂ CH(CN)OCH(OC ₂ H ₅ )CH ₃	NaN[Si(CH ₃ ) ₃ ] ₂	C ₆ H ₆ , 80°	CN OCH(OC ₂ H ₅ )CH ₃ (62)	226
	C,	CI(CH ₂ ) ₃ CH(CN)OCH(OC ₂ H ₅ )CH ₃		•	$CN = OCH(OC_2H_3)CH_3  (61)$	226
	C ₁₀	C ₆ H ₃ CH(CN)O(CH ₂ ) ₂ Cl	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	÷	$ \begin{array}{c} CN \\ -C_6H_5 \end{array} (50) \\ CN \end{array} $	194
		1,2-C ₆ H ₄ (OCH ₂ CN) ₂	NaNH ₂	DMSO		916b
		**	ſ-C₄H₀OK	-	" (62)	9160
	C,,	i-C4H9CH(CN)OCH	LDA	THF, HMPA, —78°		419
	C14	NC OCH(OC ₂ H ₃ )CH ₃ CH ₃ OCH ₂ O	NaN[Si(CH3)3]2	THF, 40°	NC OCH(OC ₂ H ₃ )CH ₃ (79) CH ₃ OCH ₂ O	917
	Cis	H Br CH ₂ CH ₂ CH(CN)OCH(OC ₂ H ₃ )CH ₃ CH ₃	LDA	THF, HMPA, —78°	CH ₃ CN (-)	918
297	C ₂₁		NaN[Si(CH ₃ ) ₃ ] ₂	THF	NC OCH(OC ₂ H ₃ )CH ₃ (75)	423

TABLE XVII. INTRAMOLECULAR REACTIONS OF ANIONS OF PROTECTED CYANOHYDRINS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C,	CH ₃ SCH ₂ CN	C,H,CH2CI	КОН	DMSO	C ₆ H ₃ CH ₂ CH(CN)SCH ₃ (-)	454
C _s	(CH ₃ ) ₂ NCS ₂ CH ₂ CN	CH,I	Aq NaOH, (n-C4H9)4NI	-	(CH ₃ ) ₂ NCS ₂ CH(CH ₃ )CN (82)	455,457
		C2H3I	• • • • • • • • • • • • • • • • • • •		(CH3)2NCS2CH(C2H3)CN (91)	455
		CH2=CHCH2CI	•		(CH ₃ ) ₂ NCS ₂ CH(CH ₂ CH=CH ₂ )CN (86)	455
		Br(CH ₂ ) ₆ Br			(CH ₃ ) ₂ NCS ₂ CH(CN)(CH ₂ ) ₄ Br (56), [(CH ₃ ) ₂ NCS ₂ CH(CN)(CH ₂ ) ₃ ] ₂ (18)	455
	(CH ₁ ),NCS ₂ CH ₂ CN	C.H.CH.Br	•	-	(CH,),NCS,CH(CH,C,H,)CN (88)	455
C.	I-C.H.SCH,CN	n-C.H.,Br	LiNH,	NH., THF	1-C.H.SCH(C.Hn)CN (83)	120
	(CH ₃ ) ₂ NCS ₂ CH(CH ₃ )CN	n-CeH13Br CeHeCH3Br	Aq NaOH, (n-C4H9)4NI	-	(CH ₃ ) ₂ NCS ₂ C(CH ₃ )(C ₆ H ₁₃ -n)CN (96) (CH ₃ ) ₂ NCS ₂ C(CH ₃ )(CH ₂ C ₆ H ₁ )CN (91)	455,457
C.	(C.H.).NC(O)SCH.CN	B-C.H. Br	An NaOH (s.C.H.).NI	_	(C.H.) NC(O)SCH(C.H. m)CN (95)	457
-1	(CH.)-NCS-CH(C.H.)CN	BC.H.Br	"		(CH.) NCS.C(C.H.)(C.H)(N (88)	455
C.	C.H.SCH.CN	CH-I	50% an NaOH	-	C.H.SC(CH.).CN (75)	456
-		C II D	[C.H.CH2N(C2H3)3]CI			
		C2H5Br		-	$C_6H_5SCH(C_2H_5)CN$ (80)	430
		CH1=CHCH1BF		-	$C_6H_3SC(CH_2CH=CH_2)_2CN$ (80)	430
	6 H 6 CH CH	CI(CH ₂ ) ₃ CI		-	$C_6H_3SCH(CH_2)_3Cl$ (39)	400
	C ₆ H ₃ SeCH ₂ CN	CH3I	Aq NaOH, (n-C4H9)4NI	-	$C_6H_3SeCH(CH_3)CN$ (96)	458
	CISCH.)CN				C(SCH_)(C_H_)CN	
		C ₂ H ₅ I	n-C4H9Li	THF, -78°	(85)	454
	C ₆ H ₅ SCH ₃ CN	n-C4H9Br	50% aq NaOH, [C6H3CH2N(C2H3)3]Cl	-	$C_6H_5SCH(C_4H_{9}-n)CN$ (-)	459
				-	" (82)	456
		C4H3CH3CI	•	-	$C_6H_5SC(CH_2C_6H_5)_2CN$ (82)	456
	C.H.SeCH,CN		Aq NaOH, (n-CaHe)aNI	-	C6H3SeCH(CH2C6H3)CN (92)	458
				-	C.H.SeC(CH2C.H.)2CN (70-88)	458
		n-C.H.,Br		-	C.H.SeCH(C.H.,-n)CN (92)	458
		C.H,CH=CHCH2CI	**		C6H3SeCH(CH2CH=CHC6H3)CN (81)	458
	C(SCH_)CN				C(SCH ₃ )(C ₂ H ₃ )CN	
C.	ſŤ	C.H.I	PC.H.I	THE - 78°	(82)	454
-,	$\bigcirc$	-1.13.	-Cariger		$\bigcirc$	
C	ACH.OC.H.CH.CH(SCH.)CN	CH.I	KOH	DMSO	4-CH.OC.H.CH.C(SCH.)(CH.)CN (-)	454
en	C.H.(CH.)C=C(SCH.)CN	C.H.Br	BC.H.Li	THE - 78"	$CH_{+}=C(C_{+}H_{+})C(C_{+}H_{+})(SCH_{+})C_{-}(59)$	454
		-1				
	C(C4H3S-2)CN	X(CH ₂ ) ₂ Cl ⁴			C(C4H3S-2)(CN)(CH2)2X 1	
			NaNH2	Toluene	$I X = N(CH_3)_2$ (-)	339
		1			$I X = N(CH_2)_{5} (-)$	339
	#-C3H11CH(SC4Hg-t)CN	n-CsH11Br	LINH ₂	NH ₃ , THF	(n-C3H11)2C(SC4H9-t)CN (93)	120
Cia	C4H3CH2C(CH3)=C(SCH3)CN	C2H3I	n-CaHaLi	THF, -78°	$C_4H_3CH=C(CH_3)C(C_2H_3)(SCH_3)CN$ (60)	454
C14	n-CaH13CH(SeCaH5)CN	CH ₃ I	LDA	•	n-C6H13C(SeC6H3)(CH3)CN (87)	460

### TABLE XVIII. ALKYLATION OF NITRILE-STABILIZED CARBANIONS BEARING &-SULFUR OR &-SELENIUM SUBSTITUENTS

" The precise leaving group in the alkylating agent was unspecified.

TABLE XIX. ARYLATION OF NITRILE-STABILIZED CARBANIONS BEARING  $\alpha$ -Sulfur Substituents

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C,	CH ₃ SCH ₂ CN	1-02NC10H2	NaOH	DMSO, 30°	4-O2NC10H6CH2CN (75)	279
C.	C ₆ H ₃ SCH ₂ CN	C ₆ H ₅ NO ₂	"		4-O ₂ NC ₆ H ₄ CH ₂ CN (18), 2-O ₂ NC ₆ H ₄ CH ₂ CN (50)	279
		1-O, NC, H,	**		4-02NC10H6CH2CN (80)	279
		4-O2NC6H4C6H3	"		2-O ₂ N-5-C ₆ H ₃ C ₆ H ₃ CH ₂ CN (74)	279
		4-(C6H3S)C6H4NO2	*	•	C ₆ H ₃ S CH ₂ CN (74)	279

No. of C Atoms	Nucleophile	Electrophile	Base	Reactions Conditions	Product(s) and Yield(s) (%)	Refs.
C3	CH₃SCH₂CN	$\overset{\circ}{\bigcirc}$	[C ₆ H ₅ CH ₂ N(CH ₃ ) ₃ ]OH	THF	(95)	454
		Ů			(88)	454
		ArCHO	•		ArCH==CH(CN)SCH ₃ I I Ar = $C_6H_3$ (75) I Ar = 4-CH ₃ OC ₆ H ₄ (74) I Ar = 3,4-(CH ₃ O) ₂ C ₆ H ₃ (85) I Ar = 2-furyl (82) I Ar = N-methyl-3-indolyl (96)	454
		C ₆ H ₅ COCH ₃			I Ar = 2-pyridyl (81) $C_6H_5C(CH_3)=C(SCH_3)CN$ (30)	454
		C6H3CH3COCH3			$C_6H_3CH_2C(CH_3)=C(SCH_3)CN$ (65)	454

TABLE XX. Addition of Nitrile-Stabilized Carbanions Bearing & Sulfur Substituents to Aldehydes and Ketones

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
C,	C ₆ H ₃ SCH ₂ CN					HO_CH(SC ₆ H ₅ )CN	п
			LDA "	THF, -78° THF, 25° Et ₂ O, -78°	I:II = 89:11 (84) $I:II = 100:0 (90)$ $I:II = 86:14 (86)$		919 919 919
		$\overset{\circ}{\frown}$		Et ₂ O, 25°	1:II = 98:2 (79)	HO_CH(SC ₆ H ₅ )CN	919 II
		$\bigcirc$	-	THF, - 78° THF 25°	$CH(SC_6H_5)CN$ I:II = 79:21 (88) I:II = 100:0 (87)	$\bigcirc$	919 919
			:	$Et_2O, -78^\circ$ $Et_2O, 25^\circ$	I:II = 46:54 (83) $I:II = 100:0 (93)$ O		919 919
C14	n-C ₆ H ₁₃ CH(SeC ₆ H ₅ )CN	-	•	THF, -78°		(91)	460

 TABLE XXI.
 1,2-Addition and 1,4-Addition of Nitrile-Stabilized Carbanions Bearing α-Sulfur Substituents to Various Michael Acceptors

No. of C Atoms	Nucleophile	Electrophile	Base	Reactions Conditions	Product(s) and Yield(s) (%)	Refs.
c	CH SCH ON	SO ₂ C ₆ H ₃			H SCH, H CN II	
0,	chjochjen				H H SCH, "	
			LDA	THF	I:II = 80:20 (61) CH ₃ S, CN CH ₃ S, CN	391
		(E)-C ₆ H ₅ CH=CHSO ₂ C ₆ H ₅			Д ц Д п	
				•	I:II = 62:38 (61)	391
ξC,	(CH ₃ ) ₂ NCS ₂ CH ₂ CN	Br(CH ₂ ) ₃ Br	Aq NaOH, (n-C4H9)4NI	-		455
		Br(CH ₂ ) ₄ Br	÷.	-	(CH ₃ ) ₂ NC(S)S CN (87)	455
		Br(CH ₂ ) ₅ Br		÷.	(CH ₃ ) ₂ NC(S)S CN (~100)	455
					(C2H5)2NC(S)S_CN	i Rai
C,	(C ₂ H ₃ ) ₂ NC(S)SCH ₂ CN	Br(CH ₂ ) ₄ Br	2	-	(~100)	457
C,	C ₆ H ₅ SCH ₂ CN	Br(CH ₂ ) ₂ Br	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	$C_{6}H_{5}S$ CN (47)	456
		Br(CH ₂ ) ₄ Br ⁴	-	-	(69)	456
		Br(CH ₂ ) ₃ Br	•	-	(50)	456
CC13	<b>RR'CHSCH(SCH₃)CN</b> <b>R</b> = CH ₃ , <b>R'</b> = C(CH ₃ )=CH ₂ <b>R</b> = H, <b>R'</b> = C(C ₂ H ₃ )=CHCH ₃ <b>R</b> = H, <b>R'</b> = CH=CHC ₃ H ₇ -n		LDA	THF	$R^{*}C(SCH_{3})_{2}CN I^{*}$ $I R^{*} = CH_{2}C(CH_{3})=CHCH_{3}$ (70) $I R^{*} = CH(CH_{3})C(C_{2}H_{3})=CH_{2}$ (86) $I R^{*} = CH(C_{3}H_{7}-n)CH=CH_{2}$ (56)	920
	$\mathbf{R} = \mathbf{H}, \mathbf{R}' = 1$ -Cyclohexenyl				I R" = (70)	
	$R = H, R' = C(C_6H_3)=CH_2$ $R = n-C_3H_7, R' = CH=CHC_2H_3$				$I  \mathbf{R}^{*} = CH_{2}C(C_{6}H_{5}) = CH_{2}  (91)$ $I  \mathbf{R}^{*} = CH(C_{2}H_{3})CH = CHC_{3}H_{7} - n  (73)$	
	R = H, R' =				$I R'' = \int (72)$	
303	C ₆ H ₃ SCH ₃ CN	SO ₂ C ₆ H ₅				
					H H I:II = 82:18 (69)	391
		SO ₂ C ₆ H ₅	•	÷	H SC ₆ H ₅ CN (81)	391
		(E)-C6H3CH=CHSO2C6H3				
					$C_6H_5$ $C_6H_5$ I:II = 86:14 (83)	391

TABLE XXII. INTRAMOLECULAR REACTIONS OF NITRILE-STABILIZED CARBANIONS BEARING &SULFUR SUBSTITUENTS

• The precise leaving group in the alkylating agent was unspecified. • The initial rearrangement product was trapped with CH₃I.

#### ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

305

TABLE XXIII. ALKYLATION OF &-(DIALKYLAMINO)NITRILE-STABILIZED

#### CARBANIONS WITH ALKYL HALIDES AND EPOXIDES

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
с,	CH ₃ CH(CN)N(CH ₃ ) ₂	C ₂ H ₅ Br	KNH ₂	NH3, Et2O	CH ₃ C(C ₂ H ₃ )(CN)N(CH ₃ ) ₂ (44)	474
C.	C.H.CH(CN)N(CH.)	C,H,Br			(C,H,),C(CN)N(CH,), (75)	474
		n-C ₄ H ₉ Br	-		$C_2H_3C(C_4H_9-n)(CN)N(CH_3)_2$ (70)	474
	(C ₂ H ₃ ) ₂ NCH ₂ CN	C _O C _{(CH₂)₂Br}	LDA	тн <b>г, нмра</b> , — 78°	$\int_{0}^{0} \int (CH_{2})_{2}CH(CN)N(C_{2}H_{3})_{2} (-)$	465
		(Z)-C ₂ H ₃ CH=CH(CH ₂ ) ₂ I			$(Z)-C_2H_3CH=CH(CH_2)_2CH(CN)N(C_2H_3)_2$ (-)	465
		H ₃ C-CHC ₃ H ₁₁ -#	•		(E)-n-C ₃ H ₁₁ CH=CHCHO (50)*	465
		n-C,H17I			(C,H,),NCH(C,H,,-n)CN (90)	465
		H ₂ C-CHC ₆ H ₃	•	-	(E)-C ₆ H ₃ CH=CHCHO (65)*	465
C,	$(CH_3)_2C = C(CN)N(CH_3)_2$	CH3I			$C_2H_3C(CH_3)=C(CN)N(CH_3)_2$ I, $CH_2=C(CH_3)C(CH_3)(CN)N(CH_3)_2$ II	
			n-C4H9Li	THF, HMPA,	1 (54), 11 (36)	475
			LDA	THF, to -40°	1 (60), 11 (28)	475
	(N)	C2H3I	•	THF, -78°	(82)	263
	CHICH, JCN				C(CH-)(C-H-)CN	
C.	$CH_3CH=C(CN)N(C_2H_3)_2$	CH ² I		THF, $-30^{\circ}$	$C_2H_3CH=C(CN)N(C_2H_3)_2$ (75)	475
		CH2=CHCH2Br			$CH_2 = CH(CH_2)_2 CH = C(CN)N(C_2H_5)_2$ (75)	475
		н₂с−снсн,	n-C ₄ H ₉ Li	тн <b>г, нмра</b> , —60°	$CH_3CHOHCH_2CH_2CH=C(CN)N(C_2H_5)_2$ (55)	475
	.0.				0	
	( )	CH ₂ =CHCH ₂ Br	LDA	THF, -78°	( ) I	263
	C₂H ₃ CHCN				C2H3CRCN	
		r.C.H.Br			$1 R = CH_2CH = CH_2$ (92)	263
	$CH_3CH = C(CN)N(C_2H_5)_2$	C ₆ H ₃ CH ₃ Br	•	THF, - 30° to - 40°	$C_6H_3(CH_2)_2CH=C(CN)N(C_2H_3)_2$ (65)	475
С,	$(CH_3)_2C = C(CN)N(C_2H_3)_2$	СНЈ	n-C ₄ H ₉ Li	THF, HMPA,	$(C_2H_3)(CH_3)C=C(CN)N(C_2H_3)_2$ (70)	475
	$(C_2H_3)CH=C(CN)N(C_2H_3)_2$		LDA	THF, - 30° to - 40°	i-C ₃ H ₇ CH=C(CN)N(C ₂ H ₅ ) ₂ (55)	475
C10	C ₆ H ₅ CH(CN)N(CH ₃ ) ₂	CH ₃ I	KNH2	NH3	C ₆ H ₅ C(CH ₃ )(CN)N(CH ₃ ) ₂ (70)	461
		C H B-	LDA	THF, - 78°	" (96)	263
		~n	"	MA3	(02-04)	463
			70% ag NaOH		" (56)	76
			n-C4H9Li	Et ₂ O	C6H3COC2H3 (42)	463
	CH3CH(CN)N(C6H3)CH3	C ₂ H ₅ I	LDA	THF, -78°	CH3C(C2H3)(CN)N(C6H3)CH3 (89)	263
	C ₆ H ₃ CH(CN)N(CH ₃ ) ₂	i-C ₃ H ₇ Br	70% aq NaOH		$C_6H_5C(C_3H_7-i)(CN)N(CH_3)_2$ (62)	76
			KNH2	NH3	(88)	461
		CH-=CHCH-Br	70% ag NaOH	Inr, - /8	$C_{\rm H}$ (CH_CH=CH_)(CN)N(CH_), (76)	76
		0.1.1 - 0.1.0.1.1.	ro /e aq reaon		canse(engen=eng)(en)n(eng)2 (10)	

### REACTIONS OF NITRILE-STABILIZED CARBANIONS

307

TABLE XXIII. ALKYLATION OF &-(DIALKYLAMINO)NITRILE-STABILIZED

### CARBANIONS WITH ALKYL HALIDES AND EPOXIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C10	C ₆ H ₃ CH(CN)N(CH ₃ ) ₂	CH2=CHCH2Br	LDA	THF, - 78°	* (87)	263
Contd.)		Br(CH ₂ ) ₃ Br	TON NOT		$C_{6}H_{5}C[(CH_{2})_{3}Br](CN)N(CH_{3})_{2}$ (89)	263
		n-C4H9Br	70% aq NaOH		$C_6H_5C(C_4H_9-n)(CN)N(CH_3)_2$ (75)	76
		Br	KNH2	NH ₃	(89)	461
		Ĩ.	1 DA	THE -78°	C.H.C(C.H.)(CN)N(CH.). (93)	263
		$\bigcirc$	LUA			105
		L .				
		$\bigcirc$		-	$C_6H_3C(C_6H_{11})(CN)N(CH_3)_2$ (90)	263
		C6H3CH2CI	70% aq NaOH	-	C ₆ H ₅ C(CH ₂ C ₆ H ₅ )(CN)N(CH ₃ ) ₂ (82)	76
			KNH ₂	NH3, Et2O	" (91)	462,261
		4-CIC ₆ H ₄ CH ₂ CI	•		C6H3C(CH2C6H4Cl-4)(CN)N(CH3)2 (100, crude)	462
	4-CIC ₆ H ₄ CH(CN)N(CH ₃ ) ₂	C ₆ H ₅ CH ₂ Cl			4-CIC ₆ H ₄ C(CH ₂ C ₆ H ₃ )(CN)N(CH ₃ ) ₂ (96)	462
	C ₆ H ₅ CH(CN)N(CH ₃ ) ₂	C6H3CH(CH3)Cl	NaNH ₂		C ₆ H ₅ C(CN)(N(CH ₃ ) ₂ )CH(CH ₃ )C ₆ H ₅ (90)	261
		(C ₆ H ₅ ) ₂ CHCl	70% aq NaOH	60-70°	$(C_6H_5)_2C = C(C_6H_5)N(CH_3)_2$ (-)	76
			NaNH ₂	NH3, EL2O	" (79)	261
C11	$CH_3CH = C(CN)N(CH_3)C_6H_5$	CH ³ I	LDA	THF	$C_2H_5CH=C(CN)N(CH_3)C_6H_5$ (76)	476
	RN(CHO)CH₂CN	2	NaH	DMF	RN(CHO)CH(CH ₃ )CN I I R = $(\pm)$ -C ₆ H ₅ CH(CH ₃ ) () I R = S-(-)-C ₆ H ₅ CH(CH ₃ ) ()	489
	$\frown$		nii o n	DUGO TUE	$\frown$	100 444
	CH(CN)N(CH ₂ ) ₄			– 10°	^N C(CH ₃ )(CN)N(CH ₂ ) ₄ (92, crude)	488,404
	$\Gamma^{\circ}$	(Z)-C ₂ H ₃ CH=CH(CH ₂ ) ₂ I	LDA	THF, HMPA,	(-)*	465
	$0 - (CH_2)_2 CH(CN)N(C_2H_5)_2$			- 78°	$(CH_2)_2CO(CH_2)_2CH=CHC_2H_3$	
	4-CH ₃ OC ₆ H ₄ CH(CN)N(CH ₃ ) ₂	C&H3CH3CI	KNH ₂	NH ₃ , Et ₂ O	4-CH ₃ OC ₆ H ₄ C(CH ₂ C ₆ H ₅ )(CN)N(CH ₃ ) ₂ (80)	462
212	$C_6H_3CH = CHCH(CN)N(CH_3)_2$	СНј	LDA	THF	$C_6H_5CH(CH_3)CH=C(CN)N(CH_3)_2$ (50), $C_6H_5CH=CHC(CH_3)(CN)N(CH_3)_2$ (50)	476
		i-C ₃ H ₇ Br			$C_6H_5CH(C_3H_7-i)CH=C(CN)N(CH_3)_2  (73),$	476
	RN(CHO)CH₂CN	СН31	NaH	DMF	$RN(CHO)CH(CH_3)CN I$ $I = (S)-(-)-C_6H_3CH(C_2H_5) (-)$ $I = (R)-(+)-C_6H_5CH(C_2H_5) (-)$	489
	CH(CN)N(CH ₂ ) ₄				COR	
	<b>F</b>			THF. DMSO		464
	^K N [⊥] CH,				N CH ₃	
		C.H.CH.Br	-		$1 R = CH_{2}C_{1}H_{2}(87)^{4}$	464
	0				.0	
	( N	CICO ₂ C ₂ H ₃		DMF	( _N ) 1	466
	4-CIC ₆ H ₄ CHCN				4-CIC, H, CRCN	
		B-CH CO C H			$\mathbf{R} = \mathbf{CO}_2\mathbf{C}_2\mathbf{H}_3  (94, \text{ crude})$	
					$\mathbf{K} = \mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{O}_2\mathbf{C}_2\mathbf{H}_3  (34)$	400
					$\mathbf{K} = \mathbf{CH}_{2}\mathbf{CH} = \mathbf{CH}_{2}  (50)$	400
		0			$\mathbf{K} = \mathbf{C}\mathbf{H}_{2}\mathbf{H}\mathbf{C} - \mathbf{C}\mathbf{H}_{2}  (-)$	400

TABLE XXIII. ALKYLATION OF a-(DIALKYLAMINO)NITRILE-STABILIZED

#### REACTIONS OF NITRILE-STABILIZED CARBANIONS

309

CARBANIONS WITH ALKYL HALIDES AND EPOXIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
С,,		СН,І	KNH2	NH,	C ₆ H ₃ C(CH ₃ )(CN)N(CH ₂ ) ₅ (—)	461
	C*H*CHCN	C ₂ H ₃ Br			C ₄ H ₅ C(C ₂ H ₅ )(CN)N(CH ₂ ) ₅ (—)	461
		н₂с−снсн₃сі	NaH	DMF	CH ₂ CH ₋ CH ₂ (40)	466
	$\begin{cases} 3,4-CH_2O_2C_6H_3CHCN\\ O \\ O$	$ \begin{array}{c} \mathbf{R}_{4} \\ \mathbf{R}_{3} \\ \mathbf{R}_{1} \\ \mathbf{R}_{2} \end{array} $ $ \begin{array}{c} \mathbf{CH}_{2}\mathbf{CI} \\ \mathbf{R}_{1} \\ \mathbf{R}_{2} \end{array} $		•	$R_4 \xrightarrow{CH_2COC_6H_3(CH_2O_2)-3,4}_{R_3} R_1$	262
Cı.	3,4-(CH3O)2C6H3CH(CN)N(C2H3)2	2-(Chloromethyl)pyridine $R^4 \longrightarrow CH_2Cl$ $R^3 \longrightarrow R^1$ $R^2$		•	$ \frac{R_{1}  R_{2} \qquad R_{3} \qquad R_{4} \qquad I^{4}}{H \qquad OCH_{2}C_{6}H_{5} \qquad OCH_{3} \qquad OCH_{3} \qquad 45} \\ \frac{R_{1}  OCH_{2}C_{6}H_{5} \qquad OCH_{3} \qquad OCH_{2}O \qquad 56}{H \qquad OCH_{3} \qquad OCH_{3} \qquad H \qquad 75} \\ \frac{3}{3}(4)(CH_{3}O)_{2}C_{6}H_{3}COCH_{2}(C_{5}H_{4}N-2) \cdot HCI \qquad (87)^{4} \\ \frac{R^{4}}{R^{3}} + + + + + + + + + + + + + + + + + + $	262 262
C.,	(C₄H₁)2C=NCH2CN		50% ag NaOH.			921
-13	(	(CH ₃ O) ₂ SO ₂ C ₂ H ₃ Br <i>i</i> -C ₃ H ₇ Br <i>i</i> -C ₄ H ₉ Br sec-C ₄ H ₉ Br	[C ₆ H ₃ CH ₂ N(C ₂ H ₃ ) ₃ ]Cl		$I = CH_{3} (95)$ $I = C_{3}H_{3} (96)$ $I = C_{3}H_{3} (79)$ $I = C_{4}H_{6} (76)$ $I = C_{4}H_{9} - i (76)$ $I = C_{4}H_{9} - sec (82)$	741
	C ₆ H ₃ CH(CN)N(C ₆ H ₅ )CH ₃	C ₄ H ₃ CH ₂ CH CH ₃ I C ₂ H ₃ I (E)-CH-CH=CHCH ₂ CI	LDA	THF, -78°	$I R = CH_2C_6H_5 (75) C_6H_5C(CH_3)(CN)N(C_6H_5)CH_3 (83) C_6H_5C(C_3H_5)(CN)N(C_6H_5)CH_3 (90) (75)$	263 263
	C ₆ H ₃ CH=CHCH(CN)N(CH ₂ ) ₃	CH ₃ I	-	THF	$C_{6}H_{3}C(CH_{2}CH=CHCH_{3})(CN)N(C_{6}H_{3})CH_{3}$ (87) $C_{6}H_{3}CH(CH_{3})CH=C(CN)N(CH_{2})_{5}$ (44), $C_{6}H_{3}CH=CHC(CH_{3})(CN)N(CH_{2})_{5}$ (56)	476
	(\$)-(+)-I-C10H2CH(CH3)N(CHO)CH2CN	́+С₃н, Сн₃I	" NaH	" DMF	$C_6H_3CH(C_3H_{7-i})CH=C(CN)N(CH_2)_3$ (63), $C_6H_3CH=CHC(C_3H_{7-i})(CN)N(CH_2)_3$ (37) $(S)(+)-1-C_{12}H_3CH(CH_3)N(CHO)CH(CH_3CN_{1-1})$	476
				L'III		

#### TABLE XXIII. ALKYLATION OF a-(DIALKYLAMINO)NITRILE-STABILIZED

# REACTIONS OF NITRILE-STABILIZED CARBANIONS

311

CARBANIONS WITH ALKYL HALIDES AND EPOXIDES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₆	t-C ₄ H ₉ CO(CH ₂ ) ₂ CH(CN)N(C ₆ H ₃ )CH ₃ or t-C ₄ H ₂ CIOS(CH ₂ ) ₂ =CHCH ₂ CH(CN)N(C ₄ H ₄ )CH ₄	СН3	LDA	THF	r-C4H9COCH2CH2COCH3 (74)	922
		1. CH ₃ 1 2. C ₆ H ₅ CH ₂ Br	-	-	r-C4H9COCH(CH2C6H3)CH2COCH3 (60)*	922
C17	C ₆ H ₅ CH=CHCH(CN)NRR'	СН3	-	(*). <del>•</del> )	$C_6H_5CH(CH_3)CH=C(CN)NRR'$ I I R = CH ₃ , R' = C ₆ H ₅ (100)	476
		i-C ₃ H ₇ Br		-	I $R = CH_3, R' = C_6H_{11}$ (100) $C_6H_5CH(C_3H_{7^{-6}})CH = C(CN)NRR'$ II II $R = CH_3, R' = C_6H_5$ (100) II $R = CH_3, R' = C_6H_{11}$ (100)	476
C20	$R^{2} \qquad CH(CN)N(C_{2}H_{3})_{2}$ $R^{1} \qquad \qquad$	$R^{6} \xrightarrow{CH_{2}CI} R^{3} \xrightarrow{R^{4}} R^{3}$	NaH	DMF	$ \begin{array}{c} \mathbf{R}^{2} \\ \mathbf{R}^{1} \\ \mathbf{R}^{1} \end{array} $ $ \begin{array}{c} \mathbf{R}^{0} \\ \mathbf{R}^{3} \\ \mathbf{R}^{3} \end{array} $ $ \begin{array}{c} \mathbf{R}^{0} \\ \mathbf{R}^{4} \\ \mathbf{R}^{4} \end{array} $ $ \begin{array}{c} \mathbf{R}^{0} \\ \mathbf{R}^{4} \\ \mathbf{R}^{4} \end{array} $	262
	C ₆ H ₃ CH ₂ O CH ₃ O N(CH ₃ )CH ₂ CH(OC ₂ H ₃ ) ₂ CN	CH ₂ Cl		•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R ⁶ I*       H     61       H     74       GOCH3     63

* The initial product was hydrolyzed.

* The precise leaving group in the alkylating agent was unspecified.

'This material was generated in situ by using a Sommelet-Hauser rearrangement of the quaternary salt I;

C6H,SO,

TABLE XXIV. TANDEM CONJUGATE ADDITION-ALKYLATION OF &-(DIALKYLAMINO)ACRYLONITRILES WITH ALKYL HALIDES

No. of C Atoms	Acceptor	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C10	CH2=C(CN)N(C6H3)CH3	ſ-C₄H ₉ Li	CH ₃ I	LDA	THF, -78°	t-C4HaCH2COCH3 (80)"	126
			C ₆ H ₅ CH ₂ Br	-		t-C4H2CH2COCH2C6H3 (92)"	126
		CaHaLi CaHaI " CaHaCHaCO	C4H4CH4COC4H4 (70)*	126			
		-	C ₆ H ₅ CH ₂ Br			(C,H,CH,),CO (66)"	126
		C ₆ H ₅ CH=CHCH(C ₆ H ₅ )Li	C.H.CH2Br			C ₆ H ₃ CH=CHCH(C ₆ H ₃ )CH ₂ COCH ₂ C ₆ H ₃ (65)*	126
		C ₆ H ₅ C[N(C ₆ H ₅ )CH ₃ ]=CHCH ₂ Li	CH ₃ I	."		C ₆ H ₅ CO(CH ₂ ) ₃ COCH ₃ (74) ⁴	126
		•	C.H.CH.Br	-		CAHACO(CH2) COCH2CAHA (66)"	126

* The initial product was hydrolyzed.
TABLE XXV. ARYLATION OF  $\alpha$ -(DIALKYLAMINO)NITRILE-STABILIZED CARBANIONS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C12		4-O2NC6H4F	NaH	DMF	4-O ₂ NC ₆ H ₄ COC ₆ H ₅ (89) ⁶	466
	•••	4-NCC_H_F			4-NCC ₆ H ₄ COC ₆ H ₅ (88) ^a	466
		2,4-(O2N)CF3C6H3Cl			2,4-(O2N)CF3C6H3COC6H5 (92)*	466

" The initial product was hydrolyzed.

TABLE XXVI. ACYLATION OF  $\alpha$ -(Dialkylamino)nitrile-Stabilized Carbanions

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₂		4-ClC ₆ H₄COCl	NaH	DMF	C ₆ H ₅ C(COC ₆ H ₄ Cl-4)CN	466
	4-CIC ₆ H ₄ CHCN				(4-ClC ₆ H ₄ CO) ₂ (31-36) ⁴	466

" The initial product was hydrolyzed.

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C3	CH2=NCH2CN	ArCHO	1. NaOC ₂ H ₅ 2. CH ₂ CO ₂ H	C ₂ H ₅ OH	ArCH=CHCN I	467
			NaOC ₂ H ₅		I Ar = C ₆ H ₅ (-) I Ar = 4,3-C ₂ H ₅ O(CH ₃ O)C ₆ H ₃ (-) I Ar = 2,4-(C ₂ H ₃ O) ₂ C ₆ H ₃ (-) I Ar = 2,4-C ₂ H ₅ O(CH ₃ O)C ₆ H ₃ (-) I Ar = 4,2-C ₂ H ₅ O(CH ₃ O)C ₆ H ₃ (-) ArCH=C(CN)N=CHAr II II Ar = 4-CH ₃ OC ₆ H ₄ (-) II Ar = 4-C ₂ H ₅ OC ₆ H ₄ (-) II Ar = 4-C ₆ H ₅ CH ₂ OC ₆ H ₄ (-) II Ar = 3,4-CH ₂ O ₂ C ₆ H ₄ (-) II Ar = 3,4-(CH ₃ O) ₂ C ₆ H ₃ (-) II Ar = 2,4-(CH ₃ O) ₂ C ₆ H ₃ (-) II Ar = 2,4-(CH ₃ O) ₂ C ₆ H ₃ (-)	479
c	CH CH(CN)N(C H )	<u>ĵ</u>		THE _ 78°	HO COCH ₃	469
C7		$\bigcirc$	LDA	Inr, -/8		400
		n-C ₅ H ₁₁ CHO O			n-C ₅ H ₁₁ CHOHCOCH ₃ (69)*	468
		$\bigcirc$	•	•	(68)"	468
	CH ₃ CH=CHCN(CN)N(CH ₃ ) ₂	'n	LDA, ZnCl ₂	•	HO (45)*	477
			-	THF, 0°	(78)*	477
	CH ₃ CH(CN)N(C ₂ H ₅ ) ₂	<i>п</i> -С ₆ Н ₁₃ СНО О	LDA	THF, -78°	n-C ₆ H ₁₃ CHOHCOCH ₃ (73) ^e . HQ_COCH ₃	468
		$\bigcirc$		-	(74)*	468
		n-C ₇ H ₁₅ CHO O	"	0.0	n-C ₇ H ₁₅ CHOHCOCH ₃ (70) ⁴ HO COCH ₃	468
		$\bigcirc$			(76)*	468
	CH ₃ CH=CHCH(CN)N(CH ₃ ) ₂	J.	LDA, ZnCl ₂	THF, 0°	(63) ⁴	477
		Ô	LDA		(53)*	477
		C ₄ H ₉ -t	LDA, ZnCl ₂	THF, -78°	HO (61)*	477

TABLE XXVII.	ADDITION OF &-(DIALKYLAMINO)NITRILE-STABILIZED CARBANIONS TO ALDEHYDES AND KETONES

No. of C Atoms	Nucleophile	Electrophile	Base	Reactions Conditions	Product(s) and Yield(s) (%)	Refs
C7 (Contd.)	CH ₃ CH=CHCH(CN)N(CH ₃ ) ₂	C ₄ H ₉ -t	LDA	THF, 0°		477
		H	O LDA, ZnCl ₂	THF, 78°		477
316				THF, 0°		477
		O C ₆ H _s		THF, 78°	HO C ₆ H ₅ (46)*	477
		$\diamondsuit$	÷	THF, 0°		477
		Ċ ₆ H ₅ <i>n</i> -C ₁₃ H ₂₇ CHO	LDA	THF,78°	<i>n</i> -C ₁₃ H ₂₇ CHOHCOCH ₃ (72) ^a	468
C ₈	C2H3CH(CN)N(C2H3)2	Å	•		HO_COC ₂ H ₅ (60)*	468
		n-CsH11CHO			n-C ₅ H ₁₁ CH(OH)COC ₂ H ₅ (62) ^a	468
		Ů			HO COC ₂ H ₃ (72) ⁶	468
		n-C ₆ H ₁₃ CHO			n-C ₆ H ₁₃ CHOHCOC ₂ H ₅ (68) ^e	468
		$\square$			(73)*	468
317		n-C ₇ H ₁₅ CHO			n-C ₇ H ₁₅ CHOHCOC ₂ H ₅ (67) ^a	468
		Ő			(78)*	468
		n-C13H27CHO			n-C ₁₃ H ₂₇ CHOHCOC ₂ H ₅ (57) ^e	468
C11	CH ₃ CH=C(CN)N(CH ₃ )C ₆ H ₅	CH ₃ COCH ₃		THF	$(CH_3)_2COHCH_2CH = C(CN)N(CH_3)C_6H_5$ (63)	476
		(C ₆ H ₅ CHO			$C_6H_5CHOHCH_2CH=C(CN)N(CH_3)C_6H_5$ (81) ( $C_6H_4$ ) ₃ C[OSi(CH_3) ₃ ]CH ₂ CH=C(CN)N(CH ₃ )C ₆ H ₄ (80) ⁴	476
C12	(CH ₃ ) ₃ SiCH(CN)N(C ₆ H ₅ )CH ₃	НСНО			$CH_2 = C(CN)N(C_6H_5)CH_3$ (83)	126

TABLE XXVII.	ADDITION OF a-(DIALKYLAMIN	)NITRILE-STABILIZED CARBANIONS TO	ALDEHYDES AND KETONES	(Continued)
--------------	----------------------------	-----------------------------------	-----------------------	-------------

The initial product was hydrolyzed.
 The initial product was treated with (CH₃)₃SiCl.

STABILIZED CARBANIONS TO VARIOUS MICHAEL ACCEPTORS

TABLE XXVIII. 1,2-ADDITION AND 1,4-ADDITION OF a-(DIALKYLAMINO)NITRILE-

			Reaction	
Nucleophile	Electrophile	Base	Conditions	Product(s) and Yield(s) (%)
CH(CN)N(CH ₄ ),	CH ₂ =CHCN	NaOCH ₃	DME	(72)*
$CH_3CH=C(CN)N(C_2H_5)_2$	CH2=CHCOCH3	LDA	THF, -60°	$CH_3CO(CH_2)_3CH=C(CN)N(C_2H_5)_2$ (60)
	O II			0 II
	$\bigcirc$	"	THF, -50°	(65)
	0			$CH_2CH=C(CN)N(C_2H_5)_2$
	, L			<u> </u>
				(65)
				$\bigcirc CH_2CH = C(CN)N(C_2H_3)_2$
	(CH ₃ ) ₂ C=CHCOCH ₃		$1 \text{HF}, -60^{\circ}$	$(CH_3)_2C=CHC(OH)(CH_3)CH_2CH=C(CN)N(C_2H_5)_2$ (38), CH_3COCH_2C(CH_3)_2CH_2CH=C(CN)N(C_2H_5)_2 (33)
	O II			о Ш
	$\frown$		THF, -60°	(36),
	$\smile$		to -20°	$CH_{2}CH_{2}CH_{2}C(CN)N(C_{2}H_{3}),$
				$HO \sim CH_2CH = C(CN)N(C_2H_3)_2$
				(32)
	Isophorone		THE COS	(( 10)
	isophorone		$1 HF, -00^{\circ}$	(10-38),
				HO, $CH_2CH=C(CN)N(C_2H_5)_2$
				(10-40)
				XX
				0
	Carvone	"		(45-65),
				$CH_2CH=C(CN)N(C_2H_3)_2$
				$HO_CH_2CH=C(CN)N(C_2H_5)_2$
				(20-30)
				$\checkmark$
C ₆ H ₃ CH(CN)N(CH ₃ ) ₂ 4-ClC ₆ H ₄ CH(CN)N(CH ₃ ) ₂	CH ₂ =CHCN	NaOCH ₃	DME	C ₆ H ₃ CO(CH ₂ ) ₂ CN (71) ^a 4-ClC ₆ H ₄ CO(CH ₂ ) ₂ CN (75) ^a

318

No. of C Atoms

C₈

C10

473 473

319

Refs.

473 475

475

475

475

475

475

## ORGANIC REACTIONS

321

TABLE XXVIII. 1,2-ADDITIO	N AND 1,4-ADDITION OF $\alpha$ -(Dialky)	AMINO)NITRILE-	STABILIZED CARBA	ANIONS TO VARIOUS MICHAEL ACCEPTORS (Continued)	
Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	CH2=CHCO2C2H2	кон	C₂H₅OH, THF	(97)	470
CH(CN)N N			CH₃OH, ℓ-C₄H₅OH	$C(CN)[(CH_2)_2CN]N \qquad (90)$	471
	CH2=CHCOC6H3	*	CH3OH, C2H3OH, Et2O	(-) C[(CH ₂ ) ₂ COC ₆ H ₃ ]CN	469
$\mathbb{N}$ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH(CN)N(CH ₃ ) ₂ (Z)-C ₂ H ₅ CH=CH(CH ₂ ) ₂ CH(CN)N(C ₂	$CH_2 = CHCN$ $H_5)_2$ $CH_2 = CHCOCH_3$	NaOCH ₃ LDA	DME THF, HMPA, – 78°	$N^{-}$ 3,4-(CH ₃ O) ₂ C ₆ H ₃ CO(CH ₂ ) ₂ CN (70) ⁴ (Z)-C ₂ H ₅ CH=CH(CH ₂ ) ₂ CO(CH ₂ ) ₂ COCH ₃ (72) ⁴	473 465
	CH2=C(CH3)CN	кон	C₂H₃OH, THF		470
4FC6H4CHCN	CH3CH=CHCN			$4-FC_6H_4CRCN$ $I R = CH_2CH(CH_3)CN (40)$ $I R = CH(CH_3)CH_2CN (89)$	470
( _N )	CH2=CHCO2C2H3			С п	470
XC6H4ĊHCN	C₀H₅CH=CHCN			$ \begin{array}{l} XC_{6}H_{4}CRCN \\ II  X = F-2, R = (CH_{2})_{2}CO_{2}C_{2}H_{5}  (81) \\ II  X = CI-2, R = (CH_{2})_{2}CO_{2}C_{2}H_{5}  (98) \\ II  X = F-3, R = (CH_{2})_{2}CO_{2}C_{2}H_{5}  (44) \\ II  X = CI-4, R = CH(C_{6}H_{5})CH_{2}CN  (-) \end{array} $	470
XC ₆ H ₄ CHCN	$CH_2 = C(CH_3)CN$ $CH_3CH = CHCN$ $C_6H_3CH = CHCN$ $CH_2 = CHCO_2C_2H_3$			11 $X = CF_3-3, R = CH_2CH(CH_3)CN$ (64) 11 $X = CF_3-3, R = CH(CH_3)CH_2CN$ (55) 11 $X = CF_3-3, R = CH(C_6H_5)CH_2CN$ () 11 $X = CF_3-3, R = (CH_2)_2CO_2C_2H_5$ (81) 11 $X = CF_3-4, R = (CH_2)_2CO_2C_2H_5$ (57) 11 $X = CH_3-3, R = (CH_2)_2CO_2C_2H_5$ (99)	470

320

No. of C Atoms

C₁₀ (Contd.)

CII

C12

C13

#### 322

### ORGANIC REACTIONS

## TABLE XXVIII. 1,2-ADDITION AND 1,4-ADDITION OF 2-(DIALKYLAMINO)NITRILE-

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

323





" The initial product was hydrolyzed.

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
					(C ₂ H ₅ ) ₂ N CN	
C ₆	(C ₂ H ₅ ) ₂ NCH ₂ CN	Cl(CH ₂ ) ₅ Cl	LDA	THF, HMPA, -78°	() (73)	465
C11	[(CH ₃ ) ₂ C=CHCH ₂ N(C ₂ H ₅ ) ₂ CH ₂ CN]Cl	-	кон	-	$CH_2 = CHC(CH_3)_2CHO$ (-)	480
C ₁₂		. <del>-</del>	t-C₄H9OK	THF, DMSO, -10°	(50)*	464
		-	NaH	-	COCH ₂ CH ₂ CN CH ₃ (53) ⁶	488,464
		-	•	-	CO(CH ₂ ) ₃ CN (-) ⁴	488
C ₁₃	The second secon	-	t-C₄H9OK	THF, DMSO	2-CH ₃ C ₆ H ₄ CHO I, C ₆ H ₃ CH ₂ CHO II I:II = 9:1	481
C17		÷		-	$t-C_4H_9$ CHO (90-95: equatorial: axial CHO = 2:3)*	481
C ₁₈	t-C4H9 CH2CN Br-	4	•		t-C ₄ H ₉ (90-95; equatorial: axial CHO = 9:1)*	481
	(CH ₃ ) ₂ N ^{CH₂CN Br⁻}	_	··	THF, – 30°	(CH ₃ ) ₂ NCH(CN) (-)	483
	H , , , , , , , , , , , , ,	÷.		THF, DMSO	H NC NC (-)	486
C19	CH ₂ CN Br-				(90-95)*	481,482
	NC N(CH ₃ ) ₂ Cl ⁻	-		DMSO, THF, - 30°	0 (46)*	484
C22	CH ₃ O COC ₆ H ₃ NCH ₂ CN SO ₃ C ₆ H ₄ CH ₃ -4	÷	۳	≀-C₄H₃OH	$CH_{3O}$ $C_{6}H_{5}$ $C_{1}$ $CN$ $CN$ $SO_{2}C_{6}H_{4}CH_{3}-4$ $(31)^{6}$	924

TABLE XXIX. INTRAMOLECULAR REACTIONS OF &-(DIALKYLAMINO)NITRILE-STABILIZED CARBANIONS OR TETRAALKYLAMMONIUM YLIDS

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂₃	O H	Br ⁻ -	≀-C₄H9OK	DMSO, THF, - 10°		0) 485
C ₂₆	CH ₃ CO ₂	Br ⁻ –		THF, ≀-C₄H9OH	CH ₃ CO ₂ CH ₃ CO ₂ (-	-) 925
C30	$CI^{-}$ $NC$ $C_{6}H_{3}CH_{2}O$ $CH_{3}O$ $OCH_{3}$	н,		THF, DMSO, H2O	$CH_{3} \rightarrow CO_{2}CH_{3}$ $OHC \rightarrow CH_{3} \rightarrow CH_{3}CH_{2}O \rightarrow CH_{3}$ $CH_{3}O \rightarrow OCH_{3}$ $(-)$	·)" 487

TABLE XXIX. INTRAMOLECULAR REACTIONS OF Q-(DIALKYLAMINO)NITRILE-STABILIZED CARBANIONS OR TETRAALKYLAMMONIUM YLIDS (Continued)

* The initial product was hydrolyzed.
* The initial product was dehydrated by using thionyl chloride in pyridine.
* The product was the result of rearrangement, alkylation with Br(CH₂)₂CN, and hydrolysis.
* The product was the result of rearrangement, alkylation with Br(CH₂)₃CN, and hydrolysis.

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C2	CICH2CN CI2CHCN	(C ₂ H ₅ ) ₃ B	KDTBP	=	$n-C_3H_7CN$ (95) $C_2H_5CHCICN$ (89)	317 319
		C2H3B		-	" (87)	319
	CICH ₂ CN	(n-C4H9)3B		_	<i>n</i> -C ₅ H ₁₁ CN (89)	317
		n-C4H9B	-	-	" (76)	317
		sec-C4H9B	-	-	sec-C ₄ H ₉ CH ₂ CN (65)	317
		i-C4H9B		÷	i-C4H9CH2CN (57)	317
	Cl₂CHCN	n-C ₄ H ₉ B	-	=	n-C ₄ H ₉ CHCICN (75)	319
		i-C4H9B		-	i-C ₄ H ₉ CHCICN (73)	319
		sec-C4H9B	-	-	sec-C ₄ H ₉ CHCICN (69)	319
	CICH ₂ CN	$\bigcirc \bigcirc$		-	CH ₂ CN (72)	317
	Cl ₂ CHCN			-	CHCICN (76)	319

TABLE XXX. Alkylation of  $\alpha$ -Halonitrile-Stabilized Carbanions

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refş.
C ₂ (Contd.)	CICH ₂ CN	C ₆ H ₁₁ B	KDTBP	-	C ₆ H ₁₁ CH ₂ CN (77)	317
	Cl ₂ CHCN	C6H11B	-	-	C ₆ H ₁₁ CHCICN (78)	319
	CICH ₂ CN	C ₆ H ₅ B		÷	C ₆ H ₃ CH ₂ CN (75)	317
		A.D		-	CH ₂ CN (65)	317
		$\left(\bigcirc\right)_{3}^{B}$	•	-	CH ₂ CN (67)	317
		$\sim$		HF, 0°	(60-70)	926
		CH ₃ CO ₂	CH ₃ C ₄ H ₉ -t		CH ₃ CO ₂ ~ ~	
C ₈	C6H3CHCICN*	C6H3CHCICN ^e	50% NaOH, CCl4 [C6H4CH2N(C2H4)2]Cl	-	$(E)-C_6H_5(CN)=C(CN)C_6H_5$ (37)	79
	C ₆ H ₅ CHBrCN	C ₆ H ₅ CHBrCN	Guanidine carbonate	-	" (—)	496

TABLE XXX. ALKYLATION OF  $\alpha$ -HALONITRILE-STABILIZED CARBANIONS (Continued)

• The  $\alpha$ -chloronitrile was generated in situ from the corresponding nitrile.

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂	CICH ₂ CN	4-CIC ₆ H ₄ NO ₂	NaOH	DMSO, 30°	2,5-O ₂ N(Cl)C ₆ H ₃ CH ₂ CN (40)	279

TABLE XXXI. ARYLATION OF  $\alpha$ -Halonitrile-Stabilized Carbanions

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

331

TABLE XXXII. DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

 $\alpha$ -Halonitrile-Stabilized Carbanions with Aldehydes and Ketones

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C₂ CICH₂CN	CICH ₂ CN	СН3СОСН3	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl B	0è -	(CH ₃ ) ₂ C-CHCN (60)	526
		50% aq NaOH, R		" (59)	530	
			$R = S(CH_2)_2O(CH_2)_2O(CH_2)_2OCH_3$ NaOC ₂ H ₅	Et_2O, -10°	" (67)	513
		C ₂ H ₅ COCH ₃		-	$C_2H_5$ CH ₃ C-CHCN (72)	513
		n-C₄H₀CHO	t-C ₅ H ₁₁ ONa	Xylene, -10°	n-C4H,CH-CHCN (-)	522,523
		n-C ₃ H ₇ COCH ₃	•	( <b>*</b> )	$CH_3 C - CHCN (-)$	522,523
		C2H3COC2H5	50% aq NaOH, R	Δ.	(C ₂ H ₅ ) ₂ C-CHCN (28-45)	530
			$R = S(CH_2)_2O(CH_2)_2O(CH_2)_2OCH_3$ NaOC ₂ H ₅	Et ₂ O, -10°	" (53)	514
		$\overset{\text{l}}{\bigcirc}$	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	OCN (65)	526
			t-C₄H₂OK NaOC₂H3	t-C₄H₃OH Et₂O, – 10°	" (74) " (73)	518 513
		i-C ₄ H ₉ COCH ₃	ſ-C₄H9OK	Et ₂ O, 0°	C - CHCN (-)	520
		Ů	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	о_см (79)	526

332

_

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

333

TABLE XXXII. DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

α-HALONITRILE-STABILIZED CARBANIONS WITH ALDEHYDES AND KETONES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂ (Contd.)	CICH ₂ CN	Ċ	50% aq NaOH,	-	ост (32-76)	530
			$R = S(CH_2)_2O(CH_2) O(CH_2)_2OCH_3$ t-C ₃ H ₁₁ ONa	Xvlene, - 10°	" (89)	523
			r-C4H9OK NaOC2H5	t-C ₄ H ₉ OH Et ₂ O, -10°	" (79) " (—)	518 513,927
		Å.	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	-	0 CN (78)	526
		→ L				
		$\bigcirc$	t-C₄H9OK	Et ₂ O, 0°		520
		C₄H₃CHO			C ₆ H ₃ CHCHCN	
		•	NaH 50% aq NaOH, [C ₆ H ₃ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl	Various solvents	E:Z = 50-62:38-50 " (75)	505 526
			50% aq NaOH, dibenzo[18]crown-6		" (78)	527
			NaOCH ₃	Et ₂ O	" (40)	509,510
			NaOC ₂ H ₅	$Et_2O, -10^{\circ}$	" (—)	515,927
			NaOC ₂ H ₅	$t-C_4H_9OH$ Et ₂ O, -25°	" (49) $C_6H_5CHOHCHCICN$ (43)	518 516
		4-CH₃OC ₆ H₄CHO	*	Et ₂ O, -10°	4-CH ₃ OC ₆ H ₄ CH-CHCN (31)	515
		" 4-CH₃C₀H₄CHO	-	Et ₂ O, -25°	4-CH ₃ OC ₆ H ₄ CHOHCH(Cl)CN (28) 4-CH ₃ C ₆ H ₄ CHOHCH(Cl)CN (20)	502 502
		n-C ₆ H ₁₃ COCH ₃	ŀ-C₄H₅OK	Et ₂ O, 0°	$CH_3$ C-CHCN (-)	520
		6-Methyl-5-hepten-2-one		-	$(CH_3)_2C = CH(CH_2)_2$ $CH_3$ $C = CHCN$ (-)	520
		Î			°∕∽−CN	
		$\bigcirc$		t-C₄H ₉ OH	(64)	518

334

## ORGANIC REACTIONS

REACTIONS OF NITRILE-STABILIZED CARBANIONS

335

TABLE XXXII. DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

α-HALONITRILE-STABILIZED CARBANIONS WITH ALDEHYDES AND KETONES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C2 (Conid.)	CICH₂CN	$\bigcirc$	ı-C₄H9OK	Et ₂ O, 0°	о_сл (-)	520
		C ₆ H ₅ COCH ₃			C ₆ H ₃ CH ₃ C-CHCN	
			NaH 50% aq NaOH, [(C ₆ H ₁₃ ) ₃ NC ₂ H ₅ ]Br or [(C ₂ H ₃ ) ₃ NC ₆ H ₄ ]Br or	НМРА —	(E:Z = 45:55) (-) " (-)	503 528
		( <b>•</b> )	$[(n-C_4H_9)_3NCH_2C_6H_5]Br$ 50% aq NaOH, $[C_6H_5CH_2N(C_2H_5)_3]Cl$	-	" (80)	526
		<b>0</b>	50% aq NaOH,	-	" (78)	530
			$R = S(CH_2)_2O(CH_2)_2O(CH_2)_2OCH_3$ NaOCH_3 NaOC_2H_5 t-C_4H_9OK t-C_4H_9ONa	Et ₂ O Et ₂ O, – 10° r-C ₄ H ₉ OH r-C ₄ H ₉ OH	" () " (80) E:Z = 64:36 (50) E:Z = 63:37 (60)	509,510 513,927 503 503
		" 3,4-(CH3O)2C6H3CHO	NaNH2 t-C3H110Na	C ₆ H ₆ Xylene, -10°	E:Z = $68:32$ (5) 3,4-(CH ₃ O) ₂ C ₆ H ₃ CHCHCN $\bigcirc$ (-)	503 522,523
		n-C ₇ H ₁₅ COCH ₃	ſ-C₄H₃OK	Et ₂ O, 0°	и-С ₇ H ₁₅ СН ₃ С-СНСМ (-)	520
		i-C ₄ H ₉ COC ₄ H ₉ -i	NaOC ₂ H ₃	Et ₂ O, -10°	( <i>i</i> -C ₄ H ₉ ) ₂ C—CHCN (35)	514
		Ů	t-C₄H₅OK	ſ-C₄H9OH	U CN	518
		Ň				
		C4H9-t			C ₄ H ₉ -t C ₄ H ₉ -t	

#### C

336

337

TABLE XXXII. DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

α-HALONITRILE-STABILIZED CARBANIONS WITH ALDEHYDES AND KETONES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂ ( (Contd.)	CICH₂CN	C ₄ H ₉ -t	Base" Base" Base" RZnBr" RZnBr" RLi" r-C4H9OK	HMPA THF $Et_2O$ THF THF, HMPT Pentane, $Et_2O$ $C_6H_6$ , HMPT $Et_2O$ , 0°	$\begin{array}{llllllllllllllllllllllllllllllllllll$	840 840 841 841 841 841 841 841 520
		a-Tetralone		r-C₄H₀OH	(77)	518
			t-C ₅ H ₁₁ ONz	- <del></del>	~CN " (>95)	521
		n-C ₉ H ₁₉ COCH ₃	ı-C₄H9OK	Et ₂ O, 0°	$CH_3 C - CHCN (-)$	520
		FcCHO	NaOC ₂ H ₅	$Et_2O, -60^{\circ}$	FeCH-CHCN (-)	517
		Cyclododecanone	ſ-C₄H9OK	Et ₂ O, 0°	о тсм (-)	520
		4-i-C4H9C6H4COCH3	i-C5H11ONa	Xylene, -10°	4-i-C4H9C6H4 CH3 C-CHCN (88)	521-52:
			NaOH	Toluene and DMF or DMSO or CH ₃ C(O)N(CH ₃ ) ₂ or HMPA	" (88)	508
		сн,о	NaH	DME	CH ₃ O (75-80)	506
		en?	50% aq NaOH, 18-crown-6	C ₆ H ₆		531
		C6H3COC6H3	50% aq NaOH, [C ₆ H ₅ CH ₂ N(C ₂ H ₅ ) ₃ ]Cl		$(C_6H_5)_2C$ -CHCN (-)	526

## ORGANIC REACTIONS

TABLE XXXII. DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

## REACTIONS OF NITRILE-STABILIZED CARBANIONS

339

α-HALONITRILE-STABILIZED CARBANIONS WITH ALDEHYDES AND KETONES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂ (Contd.)	CICH ₂ CN	C6H3COC6H3	50% aq NaOH, R	_	(C ₆ H ₅ ) ₂ C-CHCN (56)	530
			$R = S(CH_2)_2O(CH_2)_2O(CH_2)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3)_2O(CH_3$	Et ₂ O, 0°	" (84) 34 E(C H )C H	512,514
		3,4-F(C ₆ H ₅ )C ₆ H ₃ COCH ₃	1-C3H110Na	Xylene, -10°	$CH_3$ $C-CHCN$ $(-)$	523
		C ₆ H ₅ CH ₂ COCH ₂ C ₆ H ₅	NaOC ₂ H ₅	$Et_2O, -10^{\circ}$	(C ₆ H ₅ CH ₂ ) ₂ C-CHCN (65)	514
		(4-CH ₃ C ₆ H ₄ ) ₂ CO		-	$(4-CH_3C_6H_4)_2C$ – CHCN (80)	514
			NaOCH ₃	THF	$ \begin{array}{c}                                     $	511
		Estrone 3-methyl ether	$t-C_4H_9OM$ or $MNH_2$ where $M = K$ , Na, etc.	-	$ \begin{array}{c} 1  R = H, Z = O  (-) \\ 1  R = CH_3, Z = O(CH_2)O  (-) \\ \end{array} $ $ \begin{array}{c} 0 \\ -CH_3O \end{array} $ (-)	519
C,	CH ₂ =C(Cl)CN	n-C ₃ H ₇ CHO	KOCH ₂ CH=CH ₂	÷	$n-C_3H_7CH-C$ $CN$ $CH_2OCH_2CH=CH_2$ $(70)$	123
	CH3CH(CI)CN	i-C ₃ H ₇ COCH ₃	ſ-C₄H₅OK	t-C₄H₅OH	$CH_{3} = C + CH_{3} C + CH_{3} C + CH_{3} C + CN CN (67)$	518
	CH ₂ =C(CI)CN	$\overset{\circ}{\bigcirc}$	NaOCH ₃	СН₃ОН	C(NH)OCH ₃ CH ₂ OCH ₃ (32)	123
	CH3CH(CI)CN		ſ-C₄H9OK	ı-C₄H₃OH	O CN CH ₃ (81)	518

## ORGANIC REACTIONS

# **REACTIONS OF NITRILE-STABILIZED CARBANIONS**

TABLE XXXII., DARZENS GLYCIDONITRILE SYNTHESIS: REACTIONS OF

α-HALONITRILE-STABILIZED CARBANIONS WITH ALDEHYDES AND KETONES (Continued)

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C3 (Conid.)	CH ₂ =C(CI)CN	$\bigcirc$	NaOCH3	СН3ОН	O NH OCH ₃ (85) CH ₂ OCH ₃	123
	CH3CH(CI)CN	Ů	t-C₄H9OK	r-C₄H9OH	O CN CH ₃ (-)	518
	CH ₂ =C(Cl)CN	С₀Н₃СНО	NaOCH ₃	сн₃он	C ₆ H ₅ CH ₂ OCH ₃ (80)	123
	CH₃CH(CI)CN	<u>نْ</u>	t-C₄H9OK	t-C₄H9OH	CH ₃ (42)	518
		$\overset{\circ}{\bigcirc}$			O, CN CH ₃ I,	CN CH ₃ II
		C ₄ H ₉ - <i>t</i> O	Base ⁴	НМРА	$1-C_4H_9 \sim 1-C_4H_9 \sim 1-C_4H_9 \sim 1: II = 20:80 (-)$	840
	CH ₃ CHCICN	C ₆ H ₄ OCH ₃ -4	NaH	DME	CH ₃ (75)	506
	CH ₂ =C(CI)CN	C ₆ H ₃ COC ₆ H ₃	NaOCH ₃	СН₃ОН	$(C_6H_5)_2C - C$ $(C_6H_5)_2C - C$ $(C_6H_5)_2C - C$ $(T)$ $(T)$	123
C,	n-C5H11CBr2CN	Сно	P[N(CH ₃ ) ₂ ] ₃	THF, -15°	о С. С. (97) С. H ₁₁ -п (97)	121
C ₈	C6H3CHCICN	C ₆ H ₃ CHO			C6H3CHC C6H3CHC	
			NaOH, $[(n-C_4H_9)_4N]Br$ $t-C_4H_9ONa$ $t-C_4H_9ONa$ LiN[Si(CH_3)_3]_2 $t-C_4H_9OK$ $t-C_4H_9ONa$ LiN[Si(CH_3)_3]_2 NaH $t-C_4H_9ONa$	HMPA C ₆ H ₆ THF THF THF HMPA THF	O $Z:E = 98:2$ (95) $Z:E = 98:2$ (95) $Z:E = 25:75$ (70) $Z:E = 98:2$ (35) $Z:E = 80:20$ (70) $Z:E = 70:30$ (70) $Z:E = 98:2$ (95) $Z:E = 98:2$ (-) $Z:E = 80:20$ (-)	529 529,533 529,533 529,533 529,533 529,533 529,533 529 529

No. of C Atoms	Acceptor	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C3	CH ₂ =C(CI)CN	CH ₃ CH(CO ₂ C ₂ H ₅ ) ₂	CH3COCH3	t-C₄H9OK	C ₆ H ₆	$(CH_3)_2C - C CN CH_2C(CO_2C_2H_3)_2CH_3$ (57)	125
		CH ₃ COCH ₂ CH(CO ₂ C ₂ H ₅ ) ₂	-	•		$C_{2}H_{5}O_{2}C CO_{2}C_{2}H_{5} $ $(61)$	125
		C ₆ H ₃ COCH ₂ NHSO ₂ CH ₃	-		•	$C_6H_5$ $O$ $CN$ (50) SO ₂ CH ₃	125
		CH ₂ CH(CO ₂ C ₂ H ₃ ) ₂	-		"	$ \begin{array}{c}                                     $	125
		CH ₂ CH(CH ₃ )NO ₂	-	-		$ \begin{array}{c}                                     $	125
	-	CH ₃ COCH(CO ₂ C ₂ H ₅ ) ₂	-		-	$\begin{array}{c} CH_3CO \\ NC \end{array} \xrightarrow{CO_2C_2H_5} (71) \\ CO_2C_2H_5 \end{array}$	125

## TABLE XXXIII. TANDEM CONJUGATE ADDITION-ALKYLATION OF $\alpha$ -Haloacrylonitriles

No. of C Atoms	Nucleophile	Electrophile	Base	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C ₁	CICH ₂ CN	C ₆ H ₃ CH=CHCOCH ₃	NaH	НМРА	C ₆ H ₃ CH=CH C-CHCN (60)	507
					CH ₃ O	
			t-C4H9OK	HMPA or Et ₂ O	" (60)	507
			NaN[SI(CH ₃ ) ₃ ] ₂	THF	(60-70) ÇN	507
C ₈	C ₆ H ₃ CHCICN	C6H3CH=CHCOCH3	t-C4H9OK or LiN[Si(CH3)3]2	-		
						507
		C6H3CH=CHCOC6H3		-	$CN$ $I:II = 50:50 (-)$ $C_6H_5$ $H$ $H$ $I,$ $I,$	
					$C_6H_5$ $C_6H_5$ $C_6H_5$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	507
					I:II = 50:50 (-)	

TABLE XXXIV. INTRAMOLECULAR REACTIONS OF  $\alpha$ -Halonitrile-Stabilized Anions

## References

- 1. A. C. Cope, H. L. Holmes, and H. O. House, Org. React., 9, 107 (1957).
- 2. R. Levine and W. C. Fernelius, Chem. Rev., 54, 520 (1954).
- 3. C. Hennart, Ind. Chim. Belge, **30**, 820 (1965).
- 4. M. Makosza, Wiad. Chem., 21, 1 (1967) [C.A., 67, 53161t (1967)].
- 5. M. Makosza, Wiad. Chem., 23, 35 (1969) [C.A., 70, 96065u (1969)].
- 6. M. Makosza, Wiad. Chem., 23, 759 (1969) [C.A., 72, 110907v (1970)].
- 7. J. Dockx, Synthesis, **1973**, 441.
- 8. E. V. Dehmlow, Angew. Chem., Int. Ed. Engl., 13, 170 (1974).
- 9. D. Ivanov, G. Vassilev, and I. Panayotov, Synthesis, 1975, 83.
- 10. J. Mathieu and J. Weill-Raynal, *Formation of C C Bonds*, Vol. **II**, Georg Thieme, Stuttgart, 1975.
- 11. E. M. Kaiser, J. D. Petty, and P. L. A. Knutson, Synthesis, 1977, 509.
- 12. J. Boutagy and R. Thomas, Chem. Rev., 74, 87 (1974).
- 13. W. S. Wadsworth, Jr., Org. React., 25, 73 (1977).
- 14. W. E. McEwen and R. L. Cobb, Chem. Rev., 55, 511 (1955).
- 15. F. D. Popp, Adv. Heterocycl. Chem., 9, 1 (1968).
- 16. F. D. Popp, Adv. Heterocycl. Chem., 24, 187 (1979).
- 17. R. Das and C. A. Wilke, J. Am. Chem. Soc., 94, 4555 (1972).
- 18. I. Pattison, K. Wade, and B. K. Wyatt, J. Chem. Soc., A, **1968**, 837.
- 19. G. A. Gornowicz and R. West, J. Am. Chem. Soc., 93, 1714 (1971).
- 20. I. N. Juchnovski and I. G. Binev, J. Organomet. Chem., 99, 1 (1975).
- 21. C. Kruger, J. Organomet. Chem., 9, 125 (1967).
- 22. G. Albagnac, B. Brun, B. Calas, and L. Giral, Bull. Soc. Chim. Fr., **1974**, 1469.
- 23. F. G. Bordwell and W. S. Matthews, J. Am. Chem. Soc., **96**, 1216 (1974).
- W. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum, and N. R. Vanier, J. Am. Chem. Soc., 97, 7006 (1975).
- 25. A. Streitweiser, Jr. and D. M. E. Reuben, J. Am. Chem. Soc., **93**, 1794 (1971).
- 26. F. G. Bordwell and W. S. Matthews, J. Am. Chem. Soc., **96**, 1214 (1974).
- 27. W. K. McEwen, J. Am. Chem. Soc., 58, 1124 (1936).
- 28. F. G. Bordwell, J. E. Bares, J. E. Bartmess, G. J. McCollum, M. Van Der Puy, N. R. Vanier, and W. S. Matthews, J. Org. Chem., **42**, 321 (1977).
- 29. F. G. Bordwell, Northwestern University, personal communication, 1981.

- F. G. Bordwell, J. E. Bartmess, and J. A. Hautala, J. Org. Chem., 43, 3095 (1978).
- J.-F. Fauvarsue, B. Meklati, and C. Dearing, C. R. Acad. Sci., Ser. C, 278, 1162 (1968).
- 32. D. Turnbull and S. Maron, J. Am. Chem. Soc., 65, 212 (1943).
- 33. G. W. Wheland and J. Farr, J. Am. Chem. Soc., 65, 1433 (1943).
- 34. F. G. Bordwell, W. J. Boyle, Jr., J. A. Hautala, and D. C. Yee, J. Am. Chem. Soc., **91**, 4002 (1969).
- 35. H. M. Walborsky, Rec. Chem. Progr., 23, 75 (1962).
- F. G. Bordwell, N. R. Vanier, W. S. Matthews, J. B. Hendrickson, and P. L. Skipper, J. Am. Chem. Soc., 97, 7160 (1975).
- 37. H. M. Walborsky and J. M. Motes, J. Am. Chem. Soc., 92, 2445 (1970).
- H. M. Walborsky and F. M. Hornyak, J. Am. Chem. Soc., 77, 6026 (1955).
- 39. F. G. Bordwell, M. Van Der Puy, and N. R. Vanier, J. Org. Chem., **41**, 1883 (1976).
- 40. F. G. Bordwell, M. Van Der Puy, and N. R. Vanier, J. Org. Chem., **41**, 1885 (1976).
- F. G. Bordwell, J. E. Bares, J. E. Bartmess, G. E. Drucker, J. Gerhold, G. J. McCollum, M. Van Der Puy, N. R. Vanier, and W. S. Matthews, J. Org. Chem., 42, 326 (1977).
- 42. G. L. Goerner and A. A. Holzschuh, J. Org. Chem., 23, 1346 (1958).
- 43. D. S. Watt, unpublished observations.
- 44. S. Brenner and M. Bovete, Tetrahedron, **31**, 153 (1975).
- 45. S. Brenner and B. Alterovich, Tetrahedron, 32, 487 (1976).
- 46. E. M. Kaiser and C. R. Hauser, J. Am. Chem. Soc., 88, 2348 (1966).
- 47. E. M. Kaiser, L. E. Solter, R. A. Schwarz, R. D. Beard, and C. R. Hauser, J. Am. Chem. Soc., **93**, 4237 (1971).
- 48. E. J. Corey and I. Kuwajima, Tetrahedron Lett., **1972**, 487.
- 49. G. Marr and J. Ronayne, J. Organomet. Chem., 47, 417 (1973).
- 50. H. Ruschig, R. Fugman, and W. Meixner, Angew. Chem., 70, 71 (1958).
- 51. M. Prashad, M. Seth, and A. P. Bhaduri, Ind. J. Chem., Sect. B, **17B**, 62 (1979) [C.A., **91**, 157413p (1979)].
- 52. M. Hori, T. Kataoka, M. Shimizu, and S. Ohno, J. Org. Chem., **45**, 2468 (1980).
- 53. W. I. O'Sullivan, F. W. Swamer, W. J. Humphlett, and C. R. Hauser, J. Org. Chem., **26**, 2306 (1961).
- 54. C. J. Eby and C. R. Hauser, J. Am. Chem. Soc., 79, 723 (1957).
- 55. A. Brandstrom and U. Junggren, Acta Chem. Scand., 23, 2203 (1969).

- 56. C. M. Starks, J. Am. Chem. Soc., **93**, 195 (1971).
- 57. C. M. Starks and R. M. Owens, J. Am. Chem. Soc., 95, 3613 (1973).
- 58. M. Makosza, Pure Appl. Chem., 43, 439 (1975).
- 59. G. W. Gokel and H. D. Durst, Synthesis, **1976**, 168.
- 60. W. P. Weber and G. W. Gokel, *Phase Transfer Catalysis in Organic Chemistry*, Springer-Verlag, West Berlin, 1977.
- 61. C. M. Starks and C. Liotta, *Phase Transfer Catalysis. Principles and Techniques*, Academic Press, New York, 1978.
- 62. Compendium of Phase Transfer Reactions and Ion-Pair Extractions, Fluka, Buchs, Switzerland, 1978.
- E. V. Dehmlow and S. S. Dehmlow, *Monographs in Modern Chemistry*, Vol. II, Phase Transfer Catalysis, Verlag Chemie, Weinheim, 1980, [C.A., 94, 91137e (1981)].
- 64. M. A. Malinovskii, *Epoxides and Their Derivatives*, Israel Program for Scientific Translations, Jerusalem, 1965.
- 65. M. Makosza and B. Serafin, Rocz. Chem., **39**, 1401 (1965) [C.A., **64**, 17474g (1966)].
- 66. M. Makosza and B. Serafin, Rocz. Chem., **39**, 1595 (1965) [C.A., **64**, 17475c (1966)].
- 67. M. Makosza and B. Serafin, Rocz. Chem., **39**, 1799 (1965) [C.A., **64**, 17475e (1966)].
- 68. M. Makosza and B. Serafin, Rocz. Chem., **39**, 1805 (1965) [C.A., **64**, 17475g (1966)].
- 69. Lodzkie Zaklady Farmacentyczne "Polfa", Netherlands Patent 6,412,937 (1965) [C.A., **63**, 11371a (1965)].
- M. Makosza and B. Serafinowa, Rocz. Chem., 40, 1647 (1966) [C.A., 66, 94792x (1967)].
- 71. M. Makosza and B. Serafinowa, Przem. Chem., 46, 393 (1967) [C.A., 67, 108393c (1967)].
- M. Makosza, B. Serafinowa, and M. Jawdosiuk, Rocz. Chem., 41, 1037 (1967) [C.A., 68, 39313h (1968)].
- 73. J. Lange and M. Makosza, Rocz. Chem., **41**, 1303 (1967) [C.A., **68**, 29374q (1968)].
- 74. M. Makosza and M. Jawdosiuk, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 16, 597 (1968) [C.A., 71, 21831c (1969)].
- 75. J. Lange, Rocz. Chem., 42, 1619 (1968) [C.A., 70, 37413h (1969)].
- M. Makosza, B. Serafinowa, and T. Boleslawska, Rocz. Chem., 42, 817 (1968) [C.A., 69, 106174z (1968)].
- 77. M. Makosza, Rocz. Chem., 43, 333 (1969) [C.A., 70, 114789q (1969)].
- 78. M. Makosza, Rocz. Chem., 43, 79 (1969) [C.A., 70, 114776h (1969)].

- 79. M. Makosza, B. Serafinowa, and I. Gajos, Rocz. Chem., **43**, 671 (1969) [C.A., **71**, 101498q (1969)].
- 80. A. Brandstrom and U. Junggren, Tetrahedron Lett., 1972, 473.
- A. Jonczyk, B. Serafinowa, and J. Czyzewski, Rocz. Chem., 47, 52 9 (1973) [C.A., 79, 53075r (1973)].
- 82. M. Makosza, Tetrahedron Lett., 1969, 673.
- 83. M. Makosza, M. Jagusztyn-Grochowska, and M. Ludwikow, Tetrahedron, **30**, 3723 (1974).
- 84. M. Makosza, Polish Patent 56,728 (1969) [C.A., 71, 101577q (1969)].
- 85. M. Makosza and A. Jonczyk, Org. Syn., 55, 91 (1976).
- M. Makosza, J. M. Jagusztyn-Grochowska, and M. Jawdosiuk, Rocz. Chem., 45, 851 (1971) [C.A., 75, 98295w (1971)].
- M. Makosza and M. Ludwikow, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 19, 231 (1971) [C.A., 75, 48646r (1971)].
- M. Makosza and M. Jawdosiuk, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 16, 589 (1968) [C.A., 71, 30193y (1969)].
- 89. M. Makosza, Polish Patent 55,113 (1968) [C.A., 70, 106006s (1969)].
- 90. M. Makosza, Tetrahedron Lett., 1966, 5489.
- 91. E. M. Dehmlow, M. Slopianka, and J. Heider, Tetrahedron Lett., **1977**, 2361.
- 92. M. Makosza and E. Bialecka, Tetrahedron Lett., 1977, 183.
- 93. M. Makosza, Russ. Chem. Rev. (Engl. Transl.), 46, 1151 (1977).
- 94. E. V. Dehmlow, Angew. Chem., Int. Ed. Engl., 16, 493 (1977).
- 95. R. Solaro, S. D'Antone, and E. Chiellini, J. Org. Chem., 45, 4179 (1980).
- 96. L. B. Taranko and R. H. Perry, Jr., J. Org. Chem., 34, 226 (1969).
- 97. M. Makosza, M. Ludwikow, and A. Urniaz, Rocz. Chem., **49**, 297 (1975) [C.A., **83**, 78936t (1975)].
- 98. M. Makosza and B. Serafin, Rocz. Chem., **39**, 1223 (1965) [C.A., **64**, 12595h (1966)].
- 99. H. Komeili-Zadeh, H. J.-M. Don, and J. Metzger, J. Org. Chem., **43**, 156 (1978).
- 100. K. Ziegler and H. Ohlinger, Justus Liebig's Ann. Chem., 495, 84 (1932).
- 101. G. Newbery and W. Webster, J. Chem. Soc., **1947**, 738.
- 102. R. V. Stevens and M. P. Wentland, J. Am. Chem. Soc., 90, 5580 (1968).
- 103. S. Brenner and M. Bovete, Tetrahedron Lett., 1974, 1377.
- 104. C. R. Kruger and E. G. Rochow, Angew. Chem., Int. Ed. Engl., **2**, 617 (1963).
- 105. C. Kruger, Angew. Chem., Int. Ed. Engl., 4, 983 (1965).
- 106. E. M. Kaiser and C. R. Hauser, J. Org. Chem., **33**, 3402 (1968).

- 107. R. V. Stevens, P. M. Lesko, and R. Lapalme, J. Org. Chem., **40**, 3495 (1975).
- 108. C. R. Hauser and T. M. Harris, J. Am. Chem. Soc., 79, 6342 (1957).
- 109. C. R. Hauser, T. M. Harris, and T. G. Ledford, J. Am. Chem. Soc., **81**, 4099 (1959).
- 110. W. G. Kofron, W. R. Dunnavant, and C. R. Hauser, J. Org. Chem., **27**, 2737 (1962).
- 111. A. Debal, T. Cuvigny, and M. Larcheveque, Tetrahedron Lett., **1977**, 3187.
- 112. Kh. Ivanov and A. A. Dobrev, Dokl. Bolg. Akad. Nauk, 24, 609 (1971) [C.A., 75, 88663a (1971)].
- 113. G. C. Barrett and T. J. Grattan, Tetrahedron Lett., 1979, 4237.
- 114. L. Kistenbruger, P. Mischke, J. Voss and G. Wiegand, Justus Liebig's Ann. Chem., **1980**, 461.
- T. Saegusa, Y. Ito, H. Kinoshita, and S. Tomita, Bull. Chem. Soc. Jpn.,
   43, 877 (1970).
- 116. M. Pereyre, G. Colin, and J. Valade, C. R. Acad. Sci., 264, 1204 (1967).
- 117. Y. Odic and M. Pereyre, C. R. Acad. Sci., Ser. C, 269, 469 (1969).
- 118. M. Pereyre and Y. Odic, Tetrahedron Lett., 1969, 505.
- 119. Y. Odic and M. Pereyre, J. Organomet. Chem., 55, 273 (1973).
- 120. S. Kamata, S. Uyeo, N. Haga, and W. Nagata, Synth. Commun., **3**, 265 (1973).
- 121. D. R. White, Tetrahedron Lett., 1976, 1753.
- 122. R. Schefford, P. Bissig, K. L. Ghatak, B. Granwehr, and B. Patwardhan, Chimia, **29**, 463 (1975).
- 123. R. Scheffold, P. Geisser, and R. Boss, Chimia, 29, 461 (1975).
- 124. T. Shono, I. Nichiguchi, and M. Sasaki, J. Am. Chem. Soc., **100**, 4314 (1978).
- 125. D. R. White, J. Chem. Soc., Chem. Commun., 1975, 95.
- 126. H. Ahlbrecht and K. Pfaff, Synthesis, 1978, 897.
- 127. W. M. Hutchinson, U.S. Patent 3,591,621 (1979) [C.A., **75**, 76189n (1971)].
- 128. S. Hoz and D. Aurbach, Tetrahedron, **35**, 881 (1979).
- 129. (a) S. Hoz and D. Aurbach, J. Am. Chem. Soc., **102**, 2340 (1980); (b) S. Hoz, M. Albeck, and M. Livneh, J. Am. Chem. Soc., **101**, 2475 (1979).
- 130. E. M. Kaiser, R. L. Vaulx, and C. R. Hauser, Tetrahedron Lett., **1966**, 4833.
- 131. E. M. Kaiser and C. R. Hauser, J. Org. Chem., 31, 3873 (1966).
- 132. T. Cuvigny, J. F. LeBorgne, M. Larcheveque, and H. Normant,

Synthesis, **1976**, 237.

- 133. J. F. Le Borgne, T. Cuvigny, M. Larcheveque, and H. Normant, Synthesis, **1976**, 238.
- 134. D. J. Cram, *Fundamentals of Carbanion Chemistry*, Academic Press, New York, 1965.
- 135. D. J. Cram and J. M. Cram, Intra-Sci. Chem. Rep., 7, 1 (1973).
- 136. E. Buncel, *Carbanions: Mechanistic and Isotopic Aspects*, American Elsevier, New York, 1975.
- 137. F. G. Bordwell and D. L. Hughes, J. Org. Chem., 45, 3314 (1980).
- 138. K. Bowden and R. S. Cook, J. Chem. Soc., B, **1968**, 1529.
- 139. H. G. Viehe, R. Meréni, L. Stella, and Z. Janousek, Angew. Chem., Int. Ed. Engl., 18, 917 (1979).
- 140. H. M. R. Hoffmann, *Dehydrobenzene and Cycloarynes*, Academic Press, New York, 1967.
- 141. J. F. Bunnett and T. K. Brotherton, J. Org. Chem., 23, 904 (1958).
- 142. F. W. Bergstrom and R. Agostino, J. Am. Chem. Soc., 67, 2152 (1945).
- 143. V. Dryanska, K. Ivanov, and V. Lachkova, God. Sofii Univ., Khim. Fak.,
  64, 445 (1969–1970) [C.A., 78, 135838k (1973)].
- 144. (a) J. F. Bunnett, Acc. Chem. Res., **11**, 413 (1978); (b) N. Kornblum, Angew, Chem., Int. Ed. Eng., **14**, 734 (1975).
- 145. J. F. Bunnett and B. F. Gloor, J. Org. Chem., 38, 4156 (1973).
- 146. M. F. Semmelhack, in New Applications of Organometallic Reagents in Organic Synthesis, D. Seyferth, Ed., Elsevier, New York, 1976, pp. 361–396.
- 147. M. F. Semmelhack and H. T. Hall, J. Am. Chem. Soc., 96, 7092 (1974).
- 148. J. F. Bunnett, Quart. Rev., 12, 1 (1958).
- 149. R. Sauer and R. Huisgen, Angew. Chem., 72, 294 (1960).
- 150. A. Ross, Progr. Phys. Org. Chem., **1**, 31 (1963).
- 151. E. Buncel, A. R. Norris, and D. E. Russell, Quart. Rev., 22, 123 (1968).
- 152. P. Buck, Angew. Chem., Int. Ed. Engl., 8, 120 (1969).
- 153. C. F. Bernasconi, MPT Inter. Rev. Sci., Ser. 1, 3, 33 (1973).
- 154. R. B. Davis and L. C. Pizzini, J. Org. Chem., 25, 1884 (1960).
- 155. J. Davies, V. H. Davies and C. H. Hassall, J. Chem. Soc., C, 1969, 1873.
- 156. M. Oklabdzija, T. Kovac, O. Christofis, R. Toso, and V. Sunjic, Kem. Ind., 27, 453 (1978) [C.A., 90, 186909q (1979)].
- 157. R. B. Davis, L. C. Pizzini, and E. J. Bara, J. Org. Chem., **26**, 4270 (1961).
- 158. R. B. Davis, L. C. Pizzini, and J. D. Benigni, J. Am. Chem. Soc., **82**, 2913 (1960).

- 159. K. Enoki, T. Yao, T. Kaku, K. Ishii, and K. Sasai, Japanese Patent 74 14,424 (1974) [C.A., **81**, 3392n (1974)].
- 160. I. Matsuda, S. Murata, and Y. Izumi, J. Org. Chem., 45, 237 (1980).
- 161. C. R. Hauser and W. R. Brasen, J. Am. Chem. Soc., 78, 494 (1956).
- 162. W. G. Kenyon, E. M. Kaiser, and C. R. Hauser, J. Org. Chem., **30**, 4135 (1965).
- 163. R. M. Jacobson, A. Abbaspour, and G. P. Lahm, J. Org. Chem., 43, 4650 (1978).
- 164. S. Teratake and S. Morikawa, Chem. Lett., 1975, 1333.
- 165. D. Savoia, E. Tagliavini, C. Trombini, and A. Umani-Ronchi, J. Org. Chem., 45, 3227 (1980).
- 166. G. L. Goerner and W. R. Workman, J. Org. Chem., 19, 37 (1954).
- 167. R. L. Jacobs and G. L. Goerner, J. Org. Chem., 21, 837 (1956).
- 168. M. Larcheveque and T. Cuvigny, Tetrahedron Lett., 1975, 3851.
- 169. T. Kametani, Y. Kato, T. Honda, and K. Fukumoto, J. Am. Chem. Soc., 98, 8185 (1976).
- 170. F. Satoh, T. Kametani, Y. Kato, T. Honda, and K. Fukumoto, Heterocycles, **6**, 1757 (1977).
- 171. T. Kametani, H. Matsumoto, and H. Nemoto, J. Am. Chem. Soc., **100**, 6218 (1978).
- 172. T. Kametani, T. Honda, Y. Shiratori, and K. Fukumoto, Tetrahedron Lett., **1980**, 1665.
- 173. T. Kametani, H. Matsumoto, and T. Honda, Tetrahedron Lett., **1980**, 4847.
- 174. T. Kametani, K. Suzuki, and H. Nemoto, J. Org. Chem., 45, 2204 (1980).
- 175. T. Kametani, and H. Nemoto, Tetrahedron, 37, 3 (1981).
- 176. T. M. Bare, N. D. Hershey, H. O. House, and C. G. Swain, J. Org. Chem., 37, 997 (1972).
- 177. J.-C. Muller and J.-P. Fleury, Bull. Soc. Chim. Fr., **1970**, 738.
- 178. I. S. Ponticello, J. Polym. Sci., Polym. Chem. Ed., 17, 3499 (1979).
- 179. F. J. Marshall, J. Org. Chem., 23, 503 (1958).
- 180. S. Murata and I. Matsuda, Synthesis, 1978, 221.
- 181. I. Matsuda, S. Murata, and Y. Ishii, J. Chem. Soc., Perkin Trans. 1, **1979**, 26.
- 182. I. Matsuda, S. Murata, and Y. Izumi, Bull. Chem. Soc. Jpn., **52**, 2389 (1979).
- 183. H. Stamm, Angew. Chem., Int. Ed. Engl., 4, 524 (1965).
- 184. C. Dupin and R. Fraisse-Jullien, Bull. Soc. Chim. Fr., 1964, 1993.
- 185. T. Cuvigny, J. Normant, and H. Normant, C. R. Acad. Sci., Ser. C, 258,

3502 (1964).

- 186. M. S. Newman and G. Kaugars, J. Org. Chem., 31, 1379 (1966).
- 187. P. Caubere, Bull. Soc. Chim. Fr., 1966, 1293.
- R. V. Stevens, L. E. DuPree, Jr., and P. L. Loewenstein, J. Org. Chem., 37, 977 (1972).
- 189. R. V. Stevens and J. T. Lai, J. Org. Chem., **37**, 2138 (1972).
- 190. J. Ranfaing, B. Calas, J. M. Fabre, and L. Giral, Tetrahedron Lett., **1974**, 1439.
- 191. W. Krohs, L. Ther, and G. Vogel, German Patent 1,124,485 (1962)[C.A., 57, 9738d (1962)].
- 192. P. Morand, J. F. Bagli, M. Kraml, and J. Dubuc, J. Med. Chem., **7**, 504 (1964).
- 193. M. Larcheveque, P. Mulot, and T. Cuvigny, J. Organomet. Chem., **57**, C33 (1973).
- 194. M. Makosza and T. Goetzen, Rocz. Chem., **46**, 1239 (1972) [C.A., **77**, 164004v (1972)].
- 195. T. Ito, Japanese Patent 3427 (1952) [C.A., 48, 3999b (1954)].
- 196. K. V. Levshina and S. I. Sergievskaya, Zh. Obshch. Khim., 22, 2189 (1952) [C.A., 48, 534g (1954)].
- 197. A. L. Mndzhoyan, G. T. Taterosyan, and S. G. Albalyan, Doklady Akad. Nauk Arm. SSR, **27**, 93 (1958) [C.A., **53**, 18904b (1959)].
- 198. L. Horner and H. Gusten, Justus Liebig's Ann. Chem., 652, 99 (1962).
- 199. R. Dahlbom and R. Mollberg, Acta Chem. Scand., 16, 655 (1962).
- 200. A. L. Mndzhoyan, G. L. Papayan, and M. A. Bagoyan, Izv. Akad. Nauk Arm. SSR, Khim. Nauki, **16**, 359 (1963) [C.A., **60**, 11933d (1964)].
- 201. Tarchominskie Zaklady Farmaceutyczne "Polfa," Netherlands Patent 6,401,484 1964 [C.A., **62**, 9073e (1965)].
- 202. M. J. Makosza, B. Serafin, and T. L. Urbanski, U.S. Pat. 3,413,309 (1968) [C.A., 70, 47139n (1969)].
- 203. V. A. Volkova and D. V. loffe, Zh. Org. Khim., **7**, 2177 (1971) [C.A., **76**, 14048c (1972)].
- 204. D. E. Butler and J. C. Pollatz, J. Org. Chem., 36, 1308 (1971).
- 205. J. M. Fabre, B. Calas, and L. Giral, Bull. Soc. Chim. Fr., 1972, 4285.
- 206. J. A. Marshall and R. Bierenbaum, J. Org. Chem., 42, 3309 (1977).
- 207. J. C. Bottaro and G. A. Berchtold, J. Org. Chem., 45, 1176 (1980).
- 208. R. W. Lyle and G. G. Lyle, J. Am. Chem. Soc., 74, 4059 (1952).
- 209. G. Kimura, T. Uematsu, and K. Miyake, Yuki Gosei Kagaku Kyokai Shi,
   22, 380 (1964) [C.A., 61, 2967h (1964)].
- 210. J. Rouzaud, G. Cauquil, and L. Giral, Bull. Soc. Chim. Fr., 1965, 2030.

- 211. C. M. Hofmann and M. J. Weiss, J. Org. Chem., 25, 653 (1960).
- 212. K. Winterfeld, K. Küllmar and W. Göbel, Chem. Ber., 92, 1510 (1959).
- 213. C. H. Boehringer Sohn., Netherlands Patent 6,500,808 (1965) [C.A., **64**, 709b (1966)].
- 214. B. Gutkowska, Acta Pol. Pharm., **30**, 109 (1973) [C.A., **79**, 78552g (1973)].
- L. Rylski, F. Gajewski, and M. Dabrowska, Acta Pol. Pharm., **30**, 21 (1973) [C.A., **79**, 31815e (1973)].
- 216. H. H. Ong, J. A. Profitt, T. C. Spaulding, and J. C. Wilder, J. Med. Chem., **22**, 834 (1979).
- 217. H. H. Ong and J. A. Profitt, U.S. Patent 4,209,625 (1980) [C.A., **93**, 204474n (1980)].
- 218. H. Niederpruem and W. Simmler, German Patent, 1,204,228 (1965) [C.A., **64**, 2125f (1966)].
- 219. G. Mehta and P. N. Pandey, Tetrahedron Lett., **1976**, 4209.
- 220. B. Corbel and T. Durst, J. Org. Chem., **41**, 3648 (1976).
- G. Stork, 23rd National Organic Symposium, American Chemical Society, Tallahassee, Florida, June 17–21, 1973, Abstracts of Papers, p. 139.
- 222. G. Stork and J. F. Cohen, J. Am. Chem. Soc., 96, 5270 (1974).
- 223. G. Stork, L. D. Cama, and D. R. Coulson, J. Am. Chem. Soc., **96**, 5268 (1974).
- 224. J. Y. Lallemand and M. Onagal, Tetrahedron Lett., 1975, 585.
- 225. R. Achini and W. Oppolzer, Tetrahedron Lett., 1975, 369.
- 226. G. Stork, J. C. Depezay, and J. d'Angelo, Tetrahedron Lett., 1975, 389.
- 227. Y. Masuyama, Y. Ueno, and M. Okawara, Chem. Lett., 1977, 1439.
- 228. R. A. Sneen, R. W. Jenkins, Jr., and F. L. Riddle, Jr., J. Am. Chem. Soc., **84**, 1598 (1962).
- 229. J. P. Yardley, R. W. Rees, and H. Smith, U.S. Patent 3,840,557 (1974) [C.A., **82**, 31253g (1975)].
- 230. R. Fraisse and R. Jacquier, Bull. Soc. Chim. Fr., 1957, 986.
- 231. L. L. McCoy, J. Am. Chem. Soc., 80, 6568 (1958).
- 232. R. Fraisse, Bull. Soc. Chim. Fr., 1959, 1102
- 233. M. Mousseron and R. Fraisse, C. R. Acad. Sci., 248, 887 (1959).
- 234. M. Mousseron, R. Fraisse, R. Jacquier, and G. Bonavent, C. R. Acad. Sci., **248**, 2840 (1959).
- 235. M. Mousseron, R. Fraisse, R. Jacquier, and G. Bonavent, C. R. Acad. Sci., **248**, 1465 (1959).
- 236. D. T. Warner, J. Org. Chem., 24, 1536 (1959).

- 237. L. L. McCoy, J. Org. Chem., 25, 2078 (1960).
- 238. L. L. McCoy, J. Am. Chem. Soc., 82, 6416 (1960).
- 239. R. Fraisse and M. Guitard, Bull. Soc. Chim. Fr., 1960, 418
- 240. R. Fraisse and M. Guitard, Bull. Soc. Chim. Fr., 1961, 200.
- 241. Y. Inouye, S. Inamasu, M. Ohno, T. Sugita, and H. M. Walborsky, J. Am. Chem. Soc., **83**, 2962 (1961).
- 242. L. L. McCoy, J. Am. Chem. Soc., 84, 2246 (1962).
- 243. L. L. McCoy, J. Org. Chem., 29, 240 (1964).
- 244. Y. Inouye, S. Inamasu, M. Horiike, M. Ohno, and H. M. Walborsky, Tetrahedron, **24**, 2907 (1968).
- 245. U. Schmidt, German Patent 1,278,435 (1968) [C.A., 70, 37279u (1969)].
- 246. U. Schmidt, R. Schröer, and A. Hochrainer, Justus Liebig's Ann. Chem., **733**, 180 (1970).
- 247. K. Nishiyama, J. Oda, and Y. Inouye, Bull. Inst. Chem. Res., Kyoto Univ., **52**, 499 (1974) [C.A., **84**, 16443s (1976)].
- 248. J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
- 249. C. R. Hauser, C. F. Hauser, and P. J. Hamrick, Jr., J. Org. Chem., **23**, 1713 (1958).
- 250. M. Pesson and M. Joannic, C. R. Acad. Sci., 259, 4716 (1964).
- 251. M. Pesson, French Patent M3437 (1965) [C.A., 63, 18038a (1965)].
- 252. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1962, 2130.
- 253. R. Longeray and J. Dreux, Bull. Soc. Chim. Fr., 1964, 2849.
- 254. M. S. Newman, J. Am. Chem. Soc., 72, 4783 (1950).
- 255. M. S. Newman, T. Fukunaga, and T. Miwa, J. Am. Chem. Soc., **82**, 873 (1960).
- 256. N. Rabjohn and P. R. Stapp, J. Org. Chem., 26, 45 (1961).
- 257. J. P. Schaefer and J. J. Bloomfield, Org. React., 15, 1 (1967).
- 258. E. Wenkert and R. D. Haugwitz, Can. J. Chem., 46, 1160 (1968).
- 259. C. D. Gutsche and H.-W. Voges, J. Org. Chem., 32, 2685 (1967).
- 260. C. R. Hauser and W. R. Brasen, J. Am. Chem. Soc., 78, 82 (1956).
- 261. C. R. Hauser, H. M. Taylor, and T. G. Ledford, J. Am. Chem. Soc., 82, 1786 (1960).
- 262. S. F. Dyke, E. P. Tiley, A. W. C. White, and D. P. Gale, Tetrahedron, **31**, 1219 (1975).
- 263. H. Ahlbrecht, W. Raab, and C. Vonderheid, Synthesis, 1979, 127.
- 264. M. Jackman, C. Bolen, F. C. Nachod, B. F. Tullar, and S. Archer, J. Am. Chem. Soc., **71**, 2301 (1949).
- 265. M. Jackman, F. C. Nachod, and S. Archer, J. Am. Chem. Soc., **72**, 716 (1950).

- 266. A. W. Ruddy, J. Am. Chem. Soc., 73, 4096 (1951).
- 267. M. Makosza and M. Jaddosiuk, J. Chem. Soc., Chem. Commun., **1970**, 648.
- 268. G. M. Holmwood and J. C. Roberts, J. Chem. Soc., C, 1971, 3899.
- 269. C. H. Hassall and B. A. Morgan, J. Chem. Soc., Perkin Trans. 1, **1973**, 2853.
- 270. J. K. K. Lam and M. V. Sargent, J. Chem. Soc., Perkin Trans. 1, **1974**, 1417.
- 271. M. U. Broadhurst, C. H. Hassall, and G. J. Thomas, J. Chem. Soc., Perkin Trans. 1, **1977**, 2502.
- 272. A. M. Akkerman, G. C. van Leeuwen, and J. F. Michels, French Patent 1,404,514 (1965) [C.A., **64**, 3572b (1966)].
- 273. J. F. Bunnett and J. A. Skorcz, J. Org. Chem., 27, 3836 (1962).
- 274. J. A. Skorcz and F. E. Kaminski, Org. Syntheses Coll., 5, 263 (1973).
- 275. T. Kametani, Y. Kato, T. Honda, and K. Fukumoto, J. Am. Chem. Soc., Perkin Trans. 1, **1975**, 2001.
- 276. J. K. Kim and J. F. Bunnett, J. Am. Chem. Soc., 92, 7464 (1970).
- 277. See footnote 26 in reference 145.
- 278. W. E. Silverthorn, Adv. Organomet. Chem., 13, 47 (1975).
- 279. M. Makosza and J. Winiarski, J. Org. Chem., 45, 1535 (1980); the reaction of chloroacetonitrile and phenylthioacetonitrile with 1-nitronaphthalene gives 1,2 and not 1,4 adducts (M. Makosza, personal communication).
- 280. A. Solladié-Cavallo and G. Wipff, Tetrahedron Lett., **1980**, 3047.
- 281. M. F. Semmelhack and H. T. Hall, J. Am. Chem. Soc., 96, 7091 (1974).
- 282. M. F. Semmelhack, H. T. Hall, M. Yoshifuji, and G. Clark, J. Am. Chem. Soc., 97, 1247 (1975).
- 283. M. F. Semmelhack and G. Clark, J. Am. Chem. Soc., 99, 1675 (1977).
- 284. M. F. Semmelhack, G. R. Clark, R. Farina, and M. Saeman, J. Am. Chem. Soc., **101**, 217 (1979).
- M. F. Semmelhack, J. J. Harrison, and Y. Thebtaranonth, J. Org. Chem., 44, 3275 (1979).
- 286. M. F. Semmelhack, Y. Thebtaranonth, and L. Keller, J. Am. Chem. Soc., 99, 959 (1977).
- 287. M. Seefelder, Justus Liebig's Ann. Chem., 652, 107 (1962).
- 288. V. N. Krishnamurthy and S. Soundarajan, J. Org. Chem., **31**, 4300 (1966).
- 289. K. Shimo, S. Wakamatsu, T. Kawasaki, and M. Nakamura, Kogyo Kagaku Zasshi, **62**, 204 (1959) [C.A., **57**, 8492a (1962)].

- 290. D. Zavoianu and F. Cocu, Rev. Chim. (Bucharest) **18**, 2 (1967) [C.A., **67**, 32438y (1967)].
- 291. H. Miyamatsu, S. Ueno, M. Shimizu, J. Hosono, M. Tomari, K. Seida, T. Suzuki, and J. Wada, J. Med. Chem., **17**, 491 (1974).
- 292. J. P. Albarella, J. Org. Chem., 42, 2009 (1977).
- 293. C. H. Hauser and C. J. Eby, J. Am. Chem. Soc., 79, 728 (1957).
- 294. A. Takamizawa and Y. Hamashima, Yakugaku Zasshi, **84**, 1113 (1964) [C.A., **62**, 5276b (1965)].
- 295. Kh. Ivanov and I. Angelova, C. R. Acad. Bulg. Sci., 21, 257 (1968) [C.A., 69, 76978v (1968)].
- 296. P. A. S. Smith, G. J. W. Breen, M. K. Hajek, and D. V. C. Awang, J. Org. Chem., **35**, 2215 (1970).
- 297. L. Aspart-Pascot and J. Lematre, Bull. Soc. Chim. Fr., 1971, 483.
- 298. T. H. Jones and P. J. Kropp, Synth. Commun., 4, 331 (1974).
- 299. V. S. Rozhkov, Yu. I. Smushkevich, T. A. Kozik, and N. N. Suvorov, Khim. Geterotsikl. Soedin., **1974**, 1502 [C.A., **82**, 139887f (1975)].
- 300. F. S. Babichev, Yu. M. Volovenko, and V. S. Talanov, Dopoc. Akad. Nauk Ukr. SSR, Ser. B: Geol., Khim. Biol. Nauki, **1977**, 507 [C.A., **87**, 151976v (1977)].
- 301. R. V. Stevens and Y. Luh, Tetrahedron Lett., 1977, 979.
- 302. C. Goasdoue and R. Couffignal, Tetrahedron Lett., **1979**, 1585.
- 303. F. S. Babichev, Yu. M. Volovenko, and A. A. Oleinik, Khim. Geterotsikl. Soedin., **1977**, 1515 [C.A., **88**, 62276v (1978)].
- 304. M. Fedorynski, K. Wojciechowski, Z. Matacz, and M. Makosza, J. Org. Chem., **43**, 4682 (1978).
- 305. B. M. Sutton, U.S. Pat. 3,865,947 (1975) [C.A., 83, 9762w (1975)].
- 306. G. M. Ksander, J. E. McMurry, and M. Johnson, J. Org. Chem., **42**, 1180 (1977).
- 307. R. Levine and C. R. Hauser, J. Am. Chem. Soc., 68, 760 (1946).
- 308. M. Avramoff and Y. Sprinzak, J. Am. Chem. Soc., 80, 493 (1958).
- 309. S. Miyano and N. Abe, Tetrahedron Lett., 1966, 1509.
- 310. S. Miyano and N. Abe, Chem. Pharm. Bull., 15, 1811 (1967).
- 311. S. Miyano and N. Abe, Japanese Patent 68 24,412 (1968) [C.A., **70**, 87346j (1969)].
- 312. S. Miyano and N. Abe, Japanese Patent 68 29,579 (1968) [C.A., **70**, 67964f (1969)].
- 313. S. Miyano and N. Abe, Chem. Pharm. Bull., 18, 550 (1970).
- 314. S. Miyano and N. Abe, J. Org. Chem., 36, 2948 (1971).
- 315. N. Abe and S. Miyano, J. Org. Chem., 37, 526 (1972).

- 316. G. F. Cainelli, M. Panunzio, and A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. I, **1975**, 1273.
- 317. H. C. Brown, H. Nambu, and M. M. Rogic, J. Am. Chem. Soc., **91**, 6854 (1969).
- 318. J. Hooz and S. Linke, J. Am. Chem. Soc., 90, 6891 (1968).
- 319. H. Nambu and H. C. Brown, J. Am. Chem. Soc., 92, 5790 (1970).
- 320. S. Lapin and M. E. Kurz, Chem. Commun., 1981, 817.
- 321. J. Hock and M. Lecocq, C. R. Acad. Sci., 245, 73 (1957).
- 322. H. Henecka, R. Lorenz, and R. Gosswald, British Patent 811,659 (1959) [C.A., **54**, 424a (1960)].
- 323. C. Runti and L. Sindellari, Boll. Chim. Farm., **99**, 499 (1960) [C.A., **55**, 10468a (1961)].
- 324. E. M. Kaiser and C. R. Hauser, J. Am. Chem. Soc., 89, 4566 (1967).
- 325. D. N. Crouse and D. Seebach, Chem. Ber., 101, 3113 (1968).
- 326. T. Cuvigny, P. Hullet, and M. Larcheveque, J. Organomet. Chem., **57**, C36 (1973).
- 327. I. Monkovic, H. Wong, B. Belleau, I. J. Pachter, and Y. G. Perron, Can. J. Chem., 53, 2515 (1975).
- 328. J. L. Douglas and J. Meunier, Can. J. Chem., 53, 3681 (1975).
- 329. I. Monkovic, H. Wong, and G. Lim, U.S. Patent 3,980,641 (1976) [C.A., 86, 5666g (1977)].
- 330. M. Menard, P. Rivest, B. Belleau, J.-P. Daris, and Y. G. Perron, Can. J. Chem., **54**, 429 (1976).
- 331. T. T. Conway, Canadian Patent 1,012,144 (1977) [C.A., **88**, 38045y (1978)].
- 332. T. T. Conway, Canadian Patent 1,012,143 (1977) [C.A., 88, 7170f (1978)].
- 333. R. M. Bowman, German Patent 2,552,196 (1976) [C.A., **85**, 143152s (1976)].
- 334. I. Monkovic and H. Wong, Canadian Patent 1,008,855 (1977) [C.A., 87, 152447k (1977)].
- 335. R. C. Thomas, J. Labelled Comp. and Radiopharm., 15, 591 (1978).
- 336. C. F. Beam, K. D. Shealy, S. A. Risinger, J. Brown, K. L. Sid, C. R. Hanberry, K. P. Pavlakovich, and S. E. Davis, Can. J. Chem., 56, 2572 (1978).
- 337. A. Schonne, E. Braye, and A. Bruylants, Bull. Soc. Chim. Belg., **62**, 155 (1953).
- 338. K. J. Rorig, U.S. Patent 2,745,866 (1956) [C.A., 51, 2172g (1957)].
- 339. S. Archer and A. W. Ruddy, U.S. Patent 2,762,812 (1956) [C.A., **51**, 7432d (1957)].

- 340. S. Wawzonek and E. M. Smolin, Org. Syn. Coll., **3**, 715 (1955).
- 341. K. Hoffmann, J. Kebrle, and H. J. Schmid, Helv. Chim. Acta, **40**, 387 (1957).
- 342. W. L. Bencze, Belgian Patent 626,962 (1963) [C.A., 60, 6838f (1964)].
- 343. D. Zavoianu, Analele univ. "Bucuresti," Ser. stiint. nat., **12**, 167 (1963) [C.A., **65**, 3787d (1966)].
- 344. C. F. H. Allen and G. P. Mapp, Can. J. Chem., 42, 641 (1964).
- 345. D. Zavoianu and A. Mori, Analele univ. C. I. Parhon "Bucuresti," Ser. stiint. nat., Chim., **17**, 111 (1968) [C.A., **72**, 3266p (1970)].
- 346. E. Grunberg and M. Hoffer, Canadian Patent 991,179 (1976) [C.A., **85**, 143135p (1976)].
- 347. P. M. J. Manoury, G. E. A. Defosse, H. Najer, D. P. R. L. Giudicelli, I. A. G. Cavero, and F. M. Lefevre, French Patent 2,302,739 (1976) [C.A., 87, 68488r (1977)].
- 348. R. A. DeSimone, U.S. Patent 3,960,923 (1976) [C.A., **85**, 123387u (1976)].
- 349. S. A. DiBiase and G. W. Gokel, Synthesis, 1977, 629.
- 350. R. S. DeSimone, German Patent 2,656,065 (1977) [C.A., **87**, 133919z (1977)].
- 351. N. S. Vul'fson and L. Kh. Vinograd, Dokl. Akad. Nauk SSSR, **106**, 669 (1956) [C.A., **50**, 13811g (1956)].
- 352. L. Kh. Vinograd and N. S. Vul'fson, Zh. Obshch. Khim., **29**, 2690 (1959) [C.A., **54**, 10940e (1960)].
- 353. L. Kh. Vinograd and N. S. Vul'fson, Zh. Obshch. Khim., **29**, 2692 (1959) [C.A., **54**, 10940h (1960)].
- 354. N. S. Vul'fson and L. Kh. Vinograd, Zh. Obshch. Khim., **29**, 1147 (1959) [C.A., **54**, 1394e (1960)].
- 355. N. Goasdoue and M. Gaudemar, C. R. Acad. Sci., Ser. C, **269**, 861 (1969).
- 356. P.-J. Grossi, P. De Cointet de Fillain, C. Pigerol, M. Broll, and P. Eymard, French Patent 2,421,897 (1979) [C.A., 93, 46402f (1980)].
- 357. H. Jager, Arch. Pharm., 289, 165 (1956).
- 358. T. Sugasawa and T. Toyoda, Synth. Commun., 9, 553 (1979).
- 359. C. Jutz and R. M. Wagner, Angew. Chem., Int. Ed. Engl., **11**, 315 (1972).
- 360. T. Cuvigny and H. Normant, C. R. Acad. Sci., Ser. C., 268, 1380 (1969).
- 361. T. Cuvigny and H. Normant, Organometal. Chem. Synth., 9, 237 (1971).
- 362. S. A. Lang, Jr. and E. Cohen, J. Med. Chem., 18, 441 (1975).
- 363. D. N. Ridge, J. W. Hankfin, L. A. Harten, B. D. Johnson, J. Menschik, G. Nicolau, A. E. Sloboda, and D. E. Watts, J. Med. Chem., 22, 1385

(1979).

- 364. E. D. Bergmann, D. Ginsberg, and R. Pappo, Org. React., **10**, 179 (1959).
- 365. L. Wartski, M. El-Bouz, and J. Seyden-Penne, J. Organomet. Chem., **177**, 17 (1979).
- 366. L. Wartski, M. El-Bouz, J. Seyden-Penne, W. Dumont, and A. Krief, Tetrahedron Lett., **1979**, 1543.
- 367. M. El-Bouz, M.-C. Roux-Schmitt, and L. Wartski, J. Chem. Soc., Chem. Commun., **1979**, 779.
- 368. A. Loupy and J. M. Lefour, Tetrahedron, 34, 2597 (1978).
- 369. R. Sauvetre, M.-C. Roux-Schmitt, and J. Seyden-Penne, Tetrahedron, **34**, 2135 (1978).
- 370. R. Sauvetre and J. Seyden-Penne, Tetrahedron Lett., 1976, 3949.
- 371. J. Canceill, J. Gabard, and J. Jacques, Bull. Soc. Chim. Fr., 1968, 231.
- 372. F. Barbot and P. Miginiac, J. Organomet. Chem., 132, 445 (1977).
- 373. A.-M. Baradel, R. Longeray, J. Dreux, and J. Doris, Bull. Soc. Chim. Fr., **1970**, 255.
- 374. A. M. Baradel, R. Longeray, and J. Dreux, Bull. Soc. Chim. Fr., **1970**, 258.
- 375. K. V. Popandova and K. Ivanov, Dokl. Bolg. Akad. Nauk, **24**, 621 (1971) [C.A., **75**, 98296x (1971)].
- 376. M. C. Roux-Schmitt, L. Wartski, and J. Seyden-Penne, J. Chem. Research (S), **1980**, 346.
- 377. V. Carelli, Ann. Chim. (Rome), **51**, 713 (1961) [C.A., **56**, 4720i (1962)].
- 378. H. Kugita and T. Oine, Chem. Pharm. Bull., 11, 253 (1963).
- 379. H. Shirai, T. Yashiro, I. Miwa, and T. Sato, Nagoya Shiritsu Daigaku Yakugakubu Kenkyu Nempo, **45**, 52 (1967) [C.A., **69**, 86577c (1968)].
- 380. D. E. Green, A. R. Martin, and A. I. White, J. Pharm. Sci., **59**, 526 (1970).
- 381. T. Saegusa, Y. Ito, S. Tomita, and H. Kinoshita, Bull. Chem. Soc. Jpn., 45, 496 (1972).
- 382. H. Shirai, T. Yashiro, and T. Kuwayama, Nagoya Shiritsu Daigaku Yakugakubu Kenkyu Nempo, 21, 18 (1973) [C.A., 84, 89773j (1976)].
- 383. D. Lednicer, D. E. Emmert, A. D. Rudzik, and B. E. Graham, J. Med. Chem., **18**, 593 (1975).
- 384. M. A. Elkasaby, Ind. J. Chem., **14B**, 739 (1976).
- 385. H. Y. Aboul-Enein, J. Labelled Compd., 13, 509 (1977).
- 386. K. A. Parker and J. L. Kallmerten, Tetrahedron Lett., 1977, 4557.
- 387. D. Lednicer, German Patent 2,723,937 (1977) [C.A., 88, 104776r

(1978)].

- 388. A. S. Kende, J. Rizzi, and J. Reimer, Tetrahedron Lett., 1979, 1201.
- 389. K. A. Parker and J. Kallmerten, J. Org. Chem., 45, 2614 (1980).
- 390. K. A. Parker and J. Kallmerten, J. Am. Chem. Soc., 102, 5881 (1980).
- 391. T. Agawa, Y. Yoshida, and M. Komatsu, J. Chem. Soc., Perkin Trans. 1, **1981**, 751.
- 392. S. Hoz, M. Albeck, and Z. Rappoport, Synthesis, **1975**, 162.
- 393. T. Kametani and H. Nemoto, Tetrahedron Lett., 1979, 3309.
- 394. T. Kametani, M. Tsubuki, and H. Nemoto, J. Org. Chem., **45**, 4391 (1980).
- 395. T. Kametani, K. Suzuki, and H. Nemoto, J. Am. Chem. Soc., **103**, 2890 (1981).
- 396. K. V. Popandova and K. Ivanov, Dokl. Bolg. Akad. Nauk, 25, 517 (1972) [C.A., 77, 114108m (1972)].
- 397. A. Nagashima, T. Yamagata, S. Fujisaki, and S. Kajigaeshi, Nippon Kagaku Kaishi, **1975**, 2034 [C.A., **84**, 30732s (1976)].
- 398. R. A. Farr, J. E. Dolfini, and A. A. Carr, J. Org. Chem., 46, 1212 (1981).
- 399. G. R. Kieczykowski, R. H. Schlessinger, and R. B. Sulsky, Tetrahedron Lett., **1975**, 4647.
- 400. T. Miyakoshi, H. Omichi, and S. Saito, Nippon Kagaku Kaishi, **8**, 1176 (1978). [C.A., **89**, 196940m (1978)].
- 401. R. L. Cargill, D. F. Bushey, and J. J. Good, J. Org. Chem., **44**, 300 (1979).
- 402. E. van Heyningen, J. Am. Chem. Soc., 77, 4016 (1955).
- 403. J.-P. Fleury and A. Bader, Bull. Soc. Chim. Fr., 1965, 951.
- 404. Akzo N. V., Netherlands Patent 71 14,174 (1971) [C.A., **76**, 112747z (1972)].
- 405. W. T. Boyce and R. Levine, J. Org. Chem., **31**, 3807 (1966).
- 406. F. H. Rash, S. Boatman, and C. R. Hauser, Chem. Ind. (London), **1966**, 1267.
- 407. F. H. Rash, S. Boatman, and C. R. Hauser, J. Org. Chem., **32**, 372 (1967).
- 408. E. M. Kaiser and J. D. Petty, J. Organomet. Chem., 107, 219 (1976).
- 409. P. H. Dirstine and F. W. Bergstrom, J. Org. Chem., **11**, 55 (1946).
- 410. D. Seebach, Angew. Chem., Int. Ed. Engl., 8, 639 (1969).
- 411. D. Seebach, Synthesis, **1969**, 17.
- 412. O. W. Lever, Jr., Tetrahedron, **32**, 1943 (1976).
- 413. G. Stork and L. Maldonado, J. Am. Chem. Soc., 93, 5286 (1971).
- 414. A. Kalir and D. Balderman, Synthesis, 1973, 358.
- 415. C.-Y. Ho and F. T. Bond, J. Am. Chem. Soc., 96, 7355 (1974).
- 416. U. Hertenstein, S. Hunig and M. Oller, Synthesis, 1976, 416.
- 417. F. T. Bond, C.-Y. Ho, and O. McConnell, J. Org. Chem., **41**, 1416 (1976).
- 418. F. L. Malanco and L. A. Maldonado, Synth. Commun., 6, 515 (1976).
- 419. B. Cazes and S. Julia, Synth. Commun., 7, 113 (1977).
- 420. M. B. Floyd, Jr., U.S. Patent 4,076,732 (1978) [C.A., **89**, 108341p (1978)].
- 421. F. E. Ziegler, R. V. Nelson, and T. Wang, Tetrahedron Lett., 1980, 2125.
- 422. M. Makosza and T. Goetzen, Org. Prep. Proc. Int., 5, 203 (1973).
- 423. T. Takahashi, I. Minami, and J. Tsuji, Tetrahedron Lett., 1981, 2651.
- 424. D. M. Bailey, C. G. Degrazia, D. Wood, J. Siggins, H. R. Harding, G. O. Potts, and T. W. Skulan, J. Med. Chem., **17**, 702 (1974).
- 425. D. A. Evans, L. K. Truesdale, and G. L. Carroll, J. Chem. Soc., Chem. Commun., **1973**, 55.
- 426. W. Lichy and W. Sundermeyer, Chem. Ber., **106**, 587 (1973).
- 427. H. Neef and R. Muller, J. Prakt. Chem., 315, 367 (1973).
- 428. K. Deuchert, U. Hertenstein, and S. Hunig, Synthesis, 1973, 777.
- 429. S. Hunig and G. Wehner, Synthesis, **1975**, 180.
- 430. K. Deuchert, U. Hertenstein, S. Hunig, and G. Wehner, Chem. Ber., **112**, 2045 (1979).
- 431. T. Endo, S. Saeki, and M. Hamana, Heterocycles, **3**, 19 (1975).
- 432. K. B. Wiberg, J. Am. Chem. Soc., 76, 5371 (1954).
- 433. J. P. Kuebrich, R. L. Schowen, M. Wang, and M. E. Lupes, J. Am. Chem. Soc., **93**, 1214 (1971).
- 434. H. Stetter and M. Schreckenberg, Tetrahedron Lett., **1973**, 1461.
- 435. H. Stetter and M. Schreckenberg, Chem. Ber., **107**, 210 (1974).
- 436. H. Stetter and M. Schreckenberg, Chem. Ber., 107, 2453 (1974).
- 437. H. Stetter, Angew. Chem., Int. Ed. Engl., 15, 639 (1976).
- 438. H. Stetter and B. Rajh, Chem. Ber., **109**, 534 (1976).
- 439. H. Stetter, M. Schreckenberg, and K. Wiemann, Chem. Ber., **109**, 541 (1976).
- 440. H. Stetter and M. Schreckenberg, U.S. Patent 4,014,889 (1977) [C.A., **87**, 39116p (1977)].
- 441. H. Stetter and J. Krasselt, J. Heterocycl. Chem., 14, 573 (1977).
- 442. H. Stetter and H. Kuhlmann, Tetrahedron, 33, 353 (1977).
- 443. M. Hammana, T. Endo, and S. Saeki, Tetrahedron Lett., 1975, 903.
- 444. J. P. Kuebrich and R. L. Schowen, J. Am. Chem. Soc., 93, 1220 (1971).

- 445. J. C. Trisler and J. L. Frye, J. Org. Chem., 30, 306 (1965).
- 446. L. A. Maldonado, Rev. Soc. Quim. Mex., **16**, 200 (1972) [C.A., **78**, 15437g (1973)].
- 447. S. Hunig and G. Wehner, Synthesis, 1975, 391.
- 448. S. Hunig and G. Wehner, Chem. Ber., 112, 2062 (1979).
- 449. R. M. Jacobson, G. P. Lahm, and J. W. Clader, J. Org. Chem., **45**, 395 (1980).
- 450. G. Stork and L. Maldonado, J. Am. Chem. Soc., 96, 5272 (1974).
- 451. E. Guittet and S. Julia, Tetrahedron Lett., 1978, 1155.
- 452. H. Stetter and M. Schreckenberg, Angew. Chem., Int. Ed. Engl., **12**, 81 (1973).
- 453. R. M. Jacobson and G. P. Lahm, J. Org. Chem., 44, 462 (1979).
- 454. S. Kano, T. Yokommatsu, T. Ono, S. Hibino, and S. Shibuya, Chem. Pharm. Bull., **26**, 1874 (1978).
- 455. Y. Matsuyama, Y. Ueno, and M. Okawara, Tetrahedron Lett., **1976**, 2967.
- 456. M. Makosza, E. Bialecka, and M. Ludwikow, Tetrahedron Lett., **1972**, 2391.
- 457. Y. Masuyama, Y. Ueno, and M. Okawara, Bull. Chem. Soc. Jpn., **50**, 3071 (1977).
- 458. Y. Masuyama, Y. Ueno, and M. Okawara, Chem. Lett., 1977, 835.
- 459. S. Iriuchijima, K. Tanokuchi, K. Tadokoro, and G. Tsuchihashi, Agr. Biol. Chem., **40**, 1031 (1976).
- 460. P. A. Grieco and Y. Yokoyama, J. Am. Chem. Soc., 99, 5210 (1977).
- 461. H. M. Taylor and C. R. Hauser, J. Am. Chem. Soc., 82, 1960 (1960).
- 462. C. R. Hauser and G. F. Morris, J. Org. Chem., 26, 4740 (1961).
- 463. G. F. Morris and C. R. Hauser, J. Org. Chem., 27, 465 (1962).
- 464. E. B. Sanders, H. V. Secor, and J. I. Seeman, J. Org. Chem., **41**, 2658 (1976).
- 465. G. Stork, A. A. Ozorio, and A. Y. W. Leong, Tetrahedron Lett., **1978**, 5175.
- 466. F. J. McEvoy and J. D. Albright, J. Org. Chem., 44, 4597 (1979).
- 467. J. R. Merchant, H. C. Kaushik, and D. D. Vaghani, Ind. J. Chem., **4**, 27 (1966).
- 468. V. Reutrakul, P. Ratananukul, and S. Nimgirawath, Chem. Lett., **1980**, 71.
- 469. E. Leete, J. Org. Chem., 41, 3438 (1976).
- 470. J. D. Albright, F. J. McEnvoy, and D. B. Moran, J. Heterocycl. Chem., **15**, 881 (1978).

- 471. E. Leete, M. R. Chedekel, and G. B. Bodem, J. Org. Chem., **37**, 4465 (1972).
- 472. E. Leete, and G. B. Bodem, J. Am. Chem. Soc., 98, 6321 (1976).
- 473. V. Reutrakul, S. Nimgirawath, S. Panichanun, and P. Ratananukul, Chem. Lett., **1979**, 399.
- 474. Z. Welvart, Bull. Soc. Chim. Fr., 1961, 1653.
- 475. B. Lesur, J. Toye, M. Chantrenne, and L. Ghosez, Tetrahedron Lett., **1979**, 2835.
- 476. H. Ahlbrecht and C. Vonderheid, Synthesis, 1975, 512.
- 477. R. M. Jacobson and J. W. Clader, Tetrahedron Lett., 1980, 1205.
- 478. G. Buchi, P. H. Liang, and H. Wuest, Tetrahedron Lett., 1978, 2763.
- 479. D. D. Vaghani, and J. R. Merchant, J. Chem. Soc., **1961**, 1066.
- 480. A. T. Babayan, A. A. Grigoryan, K. P. Kiramidzhyan, and M. G. Indzhikyan, Arm. Khim. Zh., 23, 603 (1970) [C.A., 74, 111360q (1971)].
- 481. L. N. Mander and J. V. Turner, J. Org. Chem., 38, 2915 (1972).
- 482. L. N. Mander, J. V. Turner, and B. G. Coombe, Aust. J. Chem., **27**, 1985 (1974).
- 483. G. Buchi and H. Wuest, J. Am. Chem. Soc., 96, 7573 (1974).
- 484. T. A. Bryson and W. E. Pye, J. Org. Chem., 42, 3214 (1977).
- 485. L. N. Mander and L. T. Palmer, Aust. J. Chem., 32, 823 (1979).
- 486. J. V. Turner, B. F. Anderson, and L. N. Mander, Aust. J. Chem., **33**, 1061 (1980).
- 487. F. Z. Basha, S. Hibino, D. Kim, W. E. Pye, T.-T. Wu, and S. M. Weinreb, J. Am. Chem. Soc., **102**, 3962 (1980).
- 488. E. B. Sanders, H. V. Secor, and J. I. Seeman, German Patent 2,759,198 (1978) [C.A., 90, 137684d (1979)].
- 489. K. Harada, M. Tamura, and S. Suzuki, Bull. Chem. Soc. Jpn., **51**, 2171 (1978).
- 490. A. Christiaen, Bull. Soc. Chim. Belg., 33, 483 (1924).
- 491. T. S. Stevens, J. M. Cowan, and J. MacKinnon, J. Chem. Soc., **1931**, 2568.
- 492. L. H. Goodson and H. Christopher, J. Am. Chem. Soc., 72, 358 (1950).
- 493. L. Chalenay and E. Knoevenagel, Chem. Ber., 25, 288 (1892).
- 494. Mme. Ramart-Lucas and J. Hoch, Ann. Chim. (Paris), **13**, 385 (1930) [C.A., **24**, 4778 (1930)].
- 495. A. H. Cook and R. P. Linstead, J. Chem. Soc., 1937, 929.
- 496. J. E. Banfield, J. Chem. Soc., 1960, 456.
- 497. M. S. Newman and B. J. Magerlein, Org. React, 5, 420 (1949).
- 498. M. Ballester, Chem. Rev., 55, 283 (1955).

- 499. A. Rosowsky, in *Heterocyclic Compounds with Three- and Four-Membered Rings*, A. Weissberger, Ed., Interscience, New York, 1964, Part 1, Chapter "1", p. 106ff.
- 500. A. Haller and E. Bauer, C. R. Acad. Sci., **153**, 145 (1911).
- 501. A. Haller, Bull. Soc. Chim. Fr., **31**, 1093 (1922).
- 502. V. F. Martynov and M. I. Titov, Zh. Obshch. Khim., **34**, 2125 (1964) [C.A., **61**, 10623d (1964)].
- 503. J. Seyden-Penne, C. Gilbert, and B. Danree, C. R. Acad. Sci., Ser. C, **263**, 895 (1966).
- 504. J. Seyden-Penne and A. Roux, C. R. Acad. Sci., Ser. C, **267**, 1067 (1968).
- 505. B. Deschamps and J. Seyden-Penne, C. R. Acad. Sci., Ser. C, **271**, 1097 (1970).
- 506. P. Palitzsch, German (East) Patent 101,396 (1973) [C.A., **81**, 25521f (1974)].
- 507. G. Kyriakakou, M. C. Roux-Schmitt, and J. Seyden-Penne, Tetrahedron, **31**, 1883 (1975).
- 508. D. R. White, U.S. Patent 3,933,864 (1976) [C.A., 84, 150484j (1976)].
- 509. H. O. Huisman, Netherlands Patent 78,914 (1955) [C.A., **50**, 13994e (1956)].
- 510. N. V. Philips, Gloeilampenfabrieken, British Patent 735,900 (1955) [C.A., **50**, 7848e (1956)].
- 511. P. H. Nelson and D. G. Untch, U.S. Patent, 4,011,241 (1977) [C.A., **87**, 39186m (1977)].
- 512. F. F. Blicke and J. A. Faust, J. Am. Chem. Soc., 76, 3156 (1954).
- 513. V. F. Martynov and A. V. Shchelkunov, Zh. Obshch. Khim., **27**, 1188 (1957) [C.A., **52**, 3758e (1958)].
- 514. V. F. Martynov and A. V. Shchelkunov, Zh. Obshch. Khim., **28**, 3248 (1958) [C.A., **53**, 12265f (1959)].
- 515. V. Martynov and A. V. Shchelkunov, Zh. Obshch. Khim., **32**, 2381 (1962) [C.A., **58**, 5611f (1963)].
- 516. V. F. Martynov and M. I. Titov, Zh. Obshch. Khim., **33**, 1380 (1963) [C.A., **59**, 8650a (1963)].
- 517. A. A. Koridze, Zh. Obshch. Khim., **39**, 1649 (1969) [C.A., **71**, 91615j (1969)].
- 518. G. Stork, W. S. Worrall, and J. J. Pappas, J. Am. Chem. Soc., **82**, 4315 (1960).
- 519. P. Palitzsch, German (East) Patent 100,246 (1973) [C.A., **80**, 96218c (1974)].
- 520. J. Conrad and K. Bruns, German Patent 2,617,816 (1977) [C.A., 88,

78976j (1978)].

- 521. D. R. White and D. K. Wu, J. Chem. Soc., Chem. Commun., 1974, 988.
- 522. D. R. White, U.S. Patent 3,975,431 (1976) [C.A., 86, 5168w (1977)].
- 523. D. R. White, U.S. Patent 3,994,964 (1976) [C.A., 86, 106183c (1977)].
- 524. D. R. White, U.S. Patent 3,987,094 (1976) [C.A., 86, 89400b (1977)].
- 525. D. R. White, U.S. Patent 4,021,478 (1977) [C.A., 87, 39128u (1977)].
- 526. A. Jonczyk, M. Fedorynski, and M. Makosza, Tetrahedron Lett., **1972**, 2395.
- 527. M. Makosza and M. Ludwikow, Angew. Chem., Int., Ed. Engl., **13**, 665 (1974).
- 528. C. Kimura, K. Kashiwaya, and K. Murai, Asahi Garasu Kogyo Gijutsu Shoreikai Kenkyu Hokoku, **26**, 163 (1975) [C.A., **86**, 5112y (1977)].
- 529. E. d'Incan and J. Seyden-Penne, C. R. Acad. Sci., Ser. C, **281**, 1031 (1975).
- 530. S. Akabori, M. Ohtomi, and S. Yatabe, Bull. Chem. Soc. Jpn., **53**, 1463 (1980).
- 531. O. Hoshino, S. Sawaki, N. Shimamura, A. Onodera, and B. Umezawa, Heterocycles, **10**, 61 (1978).
- 532. B. Deschamps and J. Seyden-Penne, Tetrahedron, 27, 3959 (1971).
- 533. G. Kyriakakou and J. Seyden-Penne, Tetrahedron Lett., **1974**, 1737.
- 534. M. Murayama, Chem. Pharm. Bull., 6, 186 (1958).
- 535. (a) H. O. House, W. V. Phillips, T. S. Sayer, and C.-C. Yau, J. Org. Chem., 43, 700 (1978); (b) A. C. Cope, P. A. Trumbull, and E. R. Trumbull, J. Am. Chem. Soc., 80, 2844 (1958); (c) H. Gilman and F. Schulze, J. Am. Chem. Soc., 47, 2002 (1925); (d) A. W. Burgstahler, P.-L. Chien and M. O. Abdel-Rahman, J. Am. Chem. Soc., 86, 5281 (1964); (e) U. Wannagat and H. Niederprüm, Chem. Ber., 94, 1540 (1961).
- 536. M. Gall and H. O. House, Org. Synth., 52, 39 (1972).
- 537. D. S. Watt, Tetrahedron Lett., **1974**, 707.
- 538. C. R. Hauser and W. R. Dunnavant, Org. Syn. Coll., 4, 962 (1963).
- 539. G. L. Goerner, H. L. Muller, and J. L. Corbin, J. Org. Chem., **24**, 1,561 (1959).
- 540. F. Bodroux and F. Taboury, Bull. Soc. Chim. Fr., 7, 666 (1910).
- 541. S. B. Coan and E. I. Becker, Org. Synth. Coll., 4, 174 (1963).
- 542. R. M. Coates and M. W. Johnson, J. Org. Chem., 45, 2685 (1980).
- 543. M. J. Schlatter, Org. Synth. Coll., 3, 223 (1955).
- 544. E. B. Knott, J. Chem. Soc., **1947**, 1190.
- 545. S. Sarel and M. S. Newman, J. Am. Chem. Soc., 78, 5416 (1956).

- 546. A. G. Chigarev, and D. V. loffe, Zh. Org. Khim., **4**, 814 (1968) [C.A., **69**, 18792u (1968)].
- 547. M. Larcheveque, A. Debal, and T. Cuvigny, C. R. Acad. Sci., Ser. C, **280**, 889 (1975).
- 548. M. Larcheveque, A. Debal, and T. Cuvigny, Bull. Soc. Chim. Fr., **1974**, 1710.
- 549. S. S. Kulp, Can. J. Chem., 45, 1981 (1967).
- 550. Ajiniomoto Co., Inc., Netherlands Patent 301,953 (1965) [C.A., **64**, 11087a (1966)].
- 551. H. Normant, T. Cuvigny, J. Normant, and B. Angelo, Bull. Soc. Chim. Fr., 1965, 3446.
- 552. D. Savoia, C. Trombini, and A. Umani-Ronchi, Tetrahedron Lett., **1977**, 653.
- 553. D. Savoia, E. Tagliavini, and C. Trombini, J. Organomet. Chem., **204**, 281 (1980).
- 554. F. S. Prout, B. Burachinsky, W. T. Brannen, Jr., and H. L. Young, J. Org. Chem., **25**, 835 (1960).
- 555. W. Duismann and C. Ruchardt, Justus Liebig's Ann. Chem., 1976, 1834.
- 556. A. Debal, T. Cuvigny, and M. Larcheveque, Synthesis, **1976**, 391.
- 557. S. S. Kulp, V. B. Fish, and N. R. Easton, Can. J. Chem., **43**, 2512 (1965).
- 558. T. R. Hopkins and K. P. Dubrovin, French Patent 1,399,615 (1965) [C.A., **63**, 8268d (1965)].
- 559. S. Julia, M. Julia, and G. Linstrumelle, Bull. Soc. Chim. Fr., 1966, 3499.
- 560. R. D. Fisher, T. D. Bogard, and P. Kovacic, J. Am. Chem. Soc., **95**, 3646 (1973).
- 561. M. F. Semmelhack and T. Bargar, J. Am. Chem. Soc., 102, 7765 (1980).
- 562. F. F. Brown and N. M. van Gulick, J. Am. Chem. Soc., 77, 1083 (1955).
- 563. K. Yu. Novitskii, Kh. Gresl, O. V. Lyubinskaya, and T. A. Pershina, Khim. Geterotsikl. Soedin., **1969**, 411 [C.A., **72**, 43320h (1970)].
- 564. E. Campaigne and R. A. Forsch, J. Org. Chem., 43, 1044 (1978).
- 565. J.-A. MacPhee and J.-E. Dubois, Tetrahedron, **36**, 775 (1980).
- 566. V. M. Vdovin, R. Sultanov, E. D. Lubuzh, and A. D. Petrov, Dokl. Akad. Nauk SSSR, **138**, 831 (1961) [C.A., **55**, 22112e (1961)].
- 567. H. Tron-Loisel, P. Brossier, O. Compagnon, B. Grosjean, P.-L. Compagnon and D. Branceni, Eur. J. Med. Chem.-Chim. Ther., **12**, 379 (1977).
- 568. H. Tron-Loisel, P. Brossier, P.-L. Compagnon, and D. Branceni, Eur. J. Med. Chem.-Chim. Ther., **13**, 351 (1978) [C.A., **90**, 103746k (1979)].
- 569. W. Czuba, P. Kowalski, and K. Rutkowski, Pol. J. Chem., 53, 1477

(1979).

- 570. T. Urbanski, B. Serafinowa, C. Belzecki, J. Lange, H. Makarukowa, and M. Makosza, Polish Patent 47,902 (1964) [C.A., **61**, 4279g (1964)].
- 571. C. A. Grob and E. Renk, Helv. Chim. Acta, 37, 1672 (1954).
- 572. W. Czuba and J. Banak-Tabkowska, Zesz. Nauk. Politech. Krakow., Chem., **9**, 31 (1977) [C.A., **90**, 87210y (1979)].
- 573. P.-L. Compagnon and M. Miocque. Bull. Soc. Chim. Fr., 1968, 2105.
- 574. See footnote 84 in reference 9.
- 575. T. Kato, T. Atsumi, and H. Sasaki, Yakugaku Zasshi, **85**, 812 (1965) [C.A., **63**, 18018g (1965)].
- 576. W. L. Bencze, U.S. Patent 3,238,218 (1966) [C.A., 65, 694d (1966)].
- 577. A. Jonczyk, M. Ludwikow, and M. Makosza, Org. Prep. Proc. Int., **11**, 275 (1979).
- 578. A. L. Mndzhoyan, G. T. Tatevosyan, S. G. Agbalyan, and R. Kh. Bostandzhyan, Dokl. Akad. Nauk Arm. SSR, 28, 11 (1959) [C.A., 54, 1412c (1960)].
- 579. M. Mikolajczyk, S. Grezejszczak, and A. Zatorski, Tetrahedron Lett., **1975**, 3757.
- 580. R. L. Huang and L. Kum-Tatt, J. Chem. Soc., 1954, 2570.
- 581. A. Brodhag and C. R. Hauser, J. Am. Chem. Soc., 77, 3024 (1955).
- 582. Tarchominskie Zaklady Farmaceutyczne "Polfa," Netherlands Patent 6,401,485 (1964) [C.A., **62**, 9073g (1965)].
- 583. M. V. A. Chapman, P. A. McCrea, P. G. Marshall, and M. M. Sheahan, J. Pharm. Pharmol., **9**, 20 (1957).
- 584. M. Julia and M. Baillarge, Bull. Soc. Chim. Fr., **1957**, 928.
- 585. Shell Internationale Research, Netherlands Patent 6,408,190 (1965) [C.A., **62**, 16141d (1965)].
- 586. H. D. Hartzler, J. Am. Chem. Soc., 86, 2174 (1964).
- 587. H. D. Hartzler, U.S. Patent 3,132,159 (1964) [C.A., 61, 1775b (1964)].
- 588. W. R. Boehme, E. Schipper, W. G. Scharpf, and J. Nichols, J. Am. Chem. Soc., **80**, 5488 (1958).
- 589. G. Schwachhofer and J. Chopin, Bull. Soc. Chim. Fr., 1962, 835.
- 590. V. Petrow, O. Stephenson, and A. M. Wild, U.S. Patent 2,885,404 (1959) [C.A., **55**, 18670g (1961)].
- 591. M. J. Gonzales, Spanish Patent 233,878 (1957) [C.A., 52, 291g (1958)].
- 592. T. Tanaka and T. Mukaiyama, Chem. Lett., 1976, 1259.
- 593. E. Chiellini and R. Solaro, J. Org. Chem., 43, 2550 (1978).
- 594. F. Sos, L. Szabo, and F. Morasz, Hungarian Patent 4042 (1972) [C.A., **77**, 61626v (1972)].

- 595. G. Pakleppa, German (East) Patent 16,295 (1959) [C.A., **55**, 575e (1961)].
- 596. B. Chechelska, B. Morawski, and A. Zupanski, Polish Patent 43,552 (1960) [C.A., **55**, 935a (1961)].
- 597. R. Asami, Kogyo Kagaku Zasshi, **61**, 1238 (1958) [C.A., **56**, 403g (1962)].
- 598. K. Bernhard, M. Just, J. P. Vuilleumier, and G. Brubacher, Helv. Chim. Acta, **39**, 596 (1956).
- 599. F. B. Tutwiler, R. G. Child, and S. N. Wrenn, J. Org. Chem., **19**, 910 (1954).
- 600. P. Markov, C. Ivanoff, and M. Arnaudov, Chem. Ber., 97, 2987 (1964).
- 601. C. Ivanoff and P. Markov, Naturwissenschaften, 50, 688 (1963).
- 602. M. Makosza, Tetrahedron, 24, 175 (1968).
- 603. G. Casini, D. Misiti, and A. Schimberni, Ann. Chim. (Rome), **48**, 1322 (1958).
- 604. M. Carissimi, A. Cattaneo, R. D'Ambrosio, E. Grumelli, E. Milla, and F. Revenna, Farmaco, Ed. Sci. (Pavia), **18**, 315 (1963) [C.A., **59**, 7518h (1963)].
- 605. R. Wojtowski, Arch. Immunol. Ther. Exp., **15**, 258 (1967) [C.A., **67**, 32437x (1967)].
- 606. T. Urbanski, B. Serafin, C. Belzecki, J. Lange, H. Makarukowa, and M. Makosza, Polish Patent 47,950 (1964) [C.A., 61, 14593g (1964)].
- 607. F. Cocu, Rev. Chim. (Bucharest), **17**, 740 (1966) [C.A., **66**, 94787z (1967)].
- 608. C. Ivanov, P. Markov, and M. Arnaudov, Chem. Ber., **100**, 690 (1967).
- 609. C. G. Overberger and D. Tanner, J. Am. Chem. Soc., 77, 369 (1955).
- 610. N. Ono, T. Umemura, and T. Watanabe, Japanese Patent, 76 63,145 (1976) [C.A., **85**, 94108w (1976)].
- 611. H. G. Morren, Belgian Patent 529,384 (1954) [C.A., 53, 17062b (1959)].
- 612. D. J. Cram, F. A. A. Elhafez, and H. L. Nyquist, J. Am. Chem. Soc., **76**, 22 (1954).
- 613. F. Salmon-Legagneur and P. Brunet, C. R. Acad. Sci., **256**, 4233 (1963).
- 614. H. Morren, Belgian Patent 630,835 (1963) [C.A., 61, 9510c (1964)].
- 615. Tarchominskie Zaklady Farmaceutyczne "Polfa," Netherlands Patent 6,401,486 (1964) [C.A., **62**, 9074c (1965)].
- 616. N. Ono, T. Umemura and T. Watanabe, Canadian Patent 1,043,811 (1978) [C.A., **90**, 151846q (1979)].
- 617. P. A. Verbrugge, E. W. Uurbanus, P. Kramer, and W. Terlouw, German Patent 2,630,633 (1977) [C.A., **86**, 139653j (1977)].
- 618. Y. Nakayama, T. Izawa, German Patent 2,937,945 (1980) [C.A., 93,

95022r (1980)].

- 619. B. Bobranski and R. Wojtowski, Dissertationes Pharm., **16**, 17 (1964) [C.A., **61**, 8230h (1964)].
- 620. W. R. Boehme, E. A. Siegmund, W. G. Scharpf, and E. Schipper, J. Med. Pharm. Chem., **5**, 451 (1962).
- 621. G. Pala, S. Casadio, T. Bruzzese, E. Crecenzi, and E. Marazzi-Uberti, J. Med. Chem., **8**, 698 (1965).
- 622. H. Komeili-Zadeh, H. J.-M. Don, and J. Metzger, C. R. Acad. Sci., Ser. C, **283**, 41 (1976).
- 623. W. P. Reeves and R. G. Hilbrich, Tetrahedron, 32, 2235 (1976).
- 624. K. Mislow and C. L. Hamermesh, J. Am. Chem. Soc., 77, 1590 (1955).
- 625. H. Normant and T. Cuvigny, Bull. Soc. Chim. Fr., 1965, 1881.
- 626. W. Stühmer and S. Funke, German Patent 969,245 (1958) [C.A., **55**, 467c (1961)].
- 627. Kali-Chemie A. G., British Patent 748,064 (1956) [C.A., **52**, 12912i (1958)].
- 628. G. Pakleppa, German (East) Patent 9,445 (1955) [C.A., **52**, 9225b (1958)].
- 629. G. Pala, S. Casadio, T. Bruzzese, and G. Coppi, J. Med. Chem., **9**, 786 (1966).
- 630. F. Salmon-Legagneur and Y. Olivier, Bull. Soc. Chim. Fr., **1965**, 640.
- 631. S. G. Kuznetsov, A. N. Khotyanovskaya, and N. I. Kurnikova, Zh. Obshch. Khim., **34**, 1618 (1964) [C.A., **61**, 5557c (1964)].
- 632. R. N. Castle and M. Onda, Chem. Pharm. Bull., 9, 1008 (1961).
- 633. J. Diamond and W. F. Bruce, U.S. Pat. 2,740,777 (1956) [C.A., **50**, 15598h (1956)].
- 634. G. J. Durant, G. M. Smith, R. G. W. Spickett, and E. Szarvasi, J. Med. Chem., **8**, 598 (1965).
- 635. M. Pesson, French Patent M3112 (1965) [C.A., 62, 16203f (1965)].
- 636. F. Salmon-Legagneur and A. Brault, C. R. Acad. Sci., 247, 1348 (1958).
- 637. G. Poulain, Bull. Soc. Chim. Fr., 1964, 913.
- 638. G. Poulain, C. R. Acad. Sci., 256, 2632 (1963).
- 639. E. M. Hancock and A. C. Cope, Org. Syn. Coll., **3**, 219 (1955).
- 640. J. Gnilka, Polish Patent 47,536 (1963) [C.A., 61, 9442a (1964)].
- 641. R. W. Freerksen, W. E. Pabst, M. L. Raggio, S. A. Sherman, R. R. Wroble, and D. S. Watt, J. Am. Chem. Soc., **99**, 1536 (1977).
- 642. N. Campbell and E. Ciganek, J. Chem. Soc., **1956**, 3834.
- 643. F. Salmon-Legagneur and C. Neveu, Bull. Chim. Soc. Fr., 1963, 2175.
- 644. G. Poulain, Bull. Soc. Chim. Fr., **1964**, 1310.

- 645. G. Poulain, C. R. Acad. Sci., 257, 703 (1963).
- 646. R. H. Eastman, and K. Tamaribuchi, J. Org. Chem., 30, 1671 (1965).
- 647. R. Delaby, P. Reynand, and F. Lily, Bull. Soc. Chim. Fr., 1960, 864.
- 648. J. Heeres, L. J. J. Backx, and J. V. Cutsem, J. Med. Chem., **20**, 1516 (1977).
- 649. G. Vasiliu and F. Cocu, Rev. Chim., **18**, 259 (1967) [C.A., **67**, 108408m (1967)].
- 650. C. R. Hauser, D. Lednicer, and W. R. Brasen, J. Am. Chem. Soc., **80**, 4345 (1958).
- 651. W. R. Brasen and C. R. Hauser, J. Am. Chem. Soc., 79, 395 (1957).
- 652. W. J. Chambers, W. R. Brasen, and C. R. Hauser, J. Am. Chem. Soc., 79, 879 (1957).
- 653. F. Masuko and T. Katsura, European Patent 8,532 (1980) [C.A., **93**, 95018u (1980)].
- 654. P. G. Philpott and J. A. Barltrop, J. Chem. Soc., 1956, 691.
- 655. P. K. Yonan, R. L. Novotney, C. M. Woo, K. A. Prodan, and F. M. Hershenson, J. Med. Chem., 23, 1102 (1980).
- 656. Tarchominskie Zaklady Farmaceutyczne, Netherlands Patent 6,401,487 (1964) [C.A., 62, 11744b (1965)].
- 657. A. Rossi, L. H. Werner, W. L. Bencze, and G. De Stevens, French Patent M3273 (1965) [C.A., **65**, 2272e (1966)].
- 658. M. F. Ansell, G. T. Brooks and B. A. Knights, J. Chem. Soc., 1961, 212.
- 659. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1964, 1704.
- 660. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 259, 1878 (1964).
- 661. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1965, 2270.
- 662. W. B. Wheatley, W. F. Minor, W. M. Byrd, W. E. Fitzgibbon, Jr., M. E. Speeter, L. C. Cheney, and S. B. Binkley, J. Org. Chem., **19**, 794 (1954).
- 663. M. E. Speeter, U.S. Patent 2,823,233 (1958) [C.A., 52, 18473c (1958)].
- 664. E. Szarvasi, L. Fontaine, and C. Letourneur, Bull. Soc. Chim. Fr., **1964**, 3113.
- 665. H. Morren, R. Denayer, S. Trolin, H. Strubbe, R. Linz, G. Dony, and R. Collard, Ind. Chim. Belge, **20**, 733 (1955) [C.A., **50**, 350b (1956)].
- 666. G. Vasiliu and N. Barbulescu, Analele univ. C. I. Parhon "Bucuresti," Ser. stiint. nat., 14, 85 (1957) [C.A., 53, 8085d (1959)].
- 667. J. Decombe, A. Dormond, and F.-P. Ravoux, C. R. Acad. Sci., **259**, 4289 (1964).
- 668. D. Zavoianu and F. Cocou, Rev. Roum. Chim., **12**, 1141 (1967) [C.A.,
  **69**, 26413m (1968)].
- 669. M. S. Gibson, J. Chem. Soc., 1956, 808.

- 670. F. Johnson and W. A. Nasutavicus, J. Org. Chem., 27, 3953 (1962).
- 671. T. R. Ovsepyan, A. S. Petrosyan, and A. A. Aroyan, Arm. Khim. Zh., 26, 843 (1973) [C.A., 80, 70503s (1974)].
- 672. W. A. Bonner and T. W. Greenlee, J. Am. Chem. Soc., 81, 3336 (1959).
- 673. A. H. Lutz and O. Schnider, U.S. Patent 2,916,498 (1959) [C.A., **54**, 5697b (1960)].
- 674. Hoffmann-LaRoche and Co., British Patent 811,698 (1959) [C.A., **53**, 16150i (1959)].
- 675. Farbwerke Hoechst A.-G., British Patent 971,752 (1964) [C.A., **61**, 16012b (1964)].
- 676. S. Wolff, A. B. Smith III, and W. C. Agosta, J. Org. Chem., **39**, 1607 (1974).
- 677. H. Le Moal, A. Foucaud, R. Carrie, D. Danion, and C. Fayat, Bull. Soc. Chim. Fr., **1964**, 828.
- 678. G. Berkelhammer and V. Kameswaran, U.S. Patent 4,178,460 (1979) [C.A., **90**, 186606p (1979)].
- 679. Y. Hamada, Japanese Patent 75 154,217 (1975) [C.A., **84**, 150373x (1976)].
- 680. G. F. Woods, T. L. Heying, L. H. Schwartzman, S. M. Grenell, W. F. Gasser, E. W. Rowe, and N. C. Bolgiano, J. Org. Chem., **19**, 1290 (1954).
- 681. S. Casadio, G. Pala, E. Crescenzi, T. Bruzzese, E. Marazzi-Uberti, and G. Coppi, J. Med. Chem., 8, 589 (1965).
- 682. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1953, 70.
- 683. R. Robin, Bull. Soc. Chim. Fr., 1965, 2275.
- 684. R. Robin, C. R. Acad. Sci., 255, 541 (1962).
- 685. R. Robin, Bull. Soc. Sci. Bretagne, **39**, 109 (1964) [C.A., **64**, 14123d (1966)].
- 686. F. Salmon-Legagneur and G. Poulain, Bull. Soc. Chim. Fr., 1964, 743.
- 687. R. Robin, C. R. Acad. Sci., 256, 3137 (1963).
- 688. C. Gervais, D. Anker, M. Chareire, and H. Pacheco, Bull. Soc. Chim. Fr., **1979**, 241.
- 689. R. Robin, Bull. Soc. Chim. Fr., 1965, 2287.
- 690. L. B. Taranko and R. H. Perry, Jr., U.S. Patent 3,755,412 (1973) [C.A., 79, 104964q (1973)].
- 691. D. J. Cram and J. Allinger, J. Am. Chem. Soc., 76, 4516 (1954).
- 692. H. A. Smith, R. L. Bissell, W. G. Kenyon, J. W. MacClarence, and C. R. Hauser, J. Org. Chem., 36, 2132 (1971).
- 693. M. Makosza and B. Serafinowa, Rocz. Chem., 40, 1839 (1966) [C.A., 66, 115435a (1967)].

- 694. M. Makosza and B. Serafinowa, Acta Physiol. Pol., 29, 235 (1972) [C.A., 77, 151637d (1972)].
- 695. M. Makosza and B. Serafinowa, Acta. Pol. Pharm., **29**, 245 (1972) [C.A., **78**, 57976n (1973)].
- 696. Hommel A.-G., Belgian Patent 834,218 (1976) [C.A., 86, 5169x (1977)].
- 697. R. W. Kluiber, J. Org. Chem., **31**, 1298 (1966).
- 698. A. Bonati and C. Clerici, Farmaco, Ed. Sci. (Pavia), 14, 81 (1959) [C.A., 54, 393h (1960)].
- 699. K. Yasuda and H. Mori, Japanese Patent 73 68,545 (1973) [C.A., **80**, 59751a (1974)].
- 700. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1965, 2762.
- 701. F. Salmon-Legagneur and M. Le Gall, C. R. Acad. Sci., **260**, 3421 (1965).
- 702. M. Utjes-Le Gall, F. Salmon-Legagneur, and H. Le Moal, J. Chem. Res. (S), **1978**, 198.
- 703. W. Herz and B. E. Cleare, J. Am. Chem. Soc., 77, 2318 (1955).
- 704. J. Eberle, M. Sergant, C. Fauran, and G. Huguet, French Patent 2,068,439 (1971) [C.A., **77**, 5169m (1972)].
- 705. M. Konieczny, J. Pomorski, and A. Radzicka, Arch. Immunol. Ther. Exp., 25, 789 (1977) [C.A., 88, 120744j (1978)].
- 706. M. R. Hadler and D. R. Woodward, Belgian Patent 878,773 (1980) [C.A., **93**, 220572y (1980)].
- 707. D. S. Watt, J. Org. Chem., 39, 2799 (1974).
- 708. P. Nedenskov, W. Taub, and D. Ginsburg, Acta Chem. Scand., **12**, 1405 (1958).
- 709. H. Y. Aboul-Enein, C. W. Schanberger, A. R. Hansen, and L. J. Fisher, J. Med. Chem., **18**, 736 (1975).
- 710. J. Gnilka, T. Urbanski, M. Makosza, B. Serafinowa, L. Ptaszynski, C. Kostrebski, K. Jozefiak, and A. Ciosek, Polish Patent 48,498 (1965) [C.A., 64, 5012b (1966)].
- 711. J. A. Moore and E. C. Capaldi, J. Org. Chem., 29, 2860 (1964).
- 712. R. Robin, C. R. Acad. Sci., 257, 3424 (1963).
- 713. T. Kametani, H. Nemoto, and H. Ishikawa, J. Am. Chem. Soc., **99**, 3461 (1977).
- 714. F. Salmon-Legagneur and M. Le Gall, Bull. Soc. Chim. Fr., 1966, 553.
- 715. F. Salmon-Legagneur and M. Le Gall, C. R. Acad. Sci., **259**, 2457 (1964).
- 716. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 256, 187 (1963).
- 717. Knoll A.-G., Belgian Patent, 615,861 (1962) [C.A., 59, 13892d (1963)].

- 718. H. O. House and T. M. Bare, J. Org. Chem., **33**, 943 (1968).
- 719. D. G. Rowsell, German Patent 2,413,639 (1974) [C.A., **82**, 86130v (1975)].
- 720. J. F. Cavalla, D. C. Bishop, R. A. Selway, N. E. Webb, C. V. Winder, and M. Welford, J. Med. Chem., 8, 316 (1965).
- 721. F. Salmon-Legagneur and J. Rabadeux, C. R. Acad. Sci., **261**, 5524 (1965).
- 722. G. Bellomonte and V. Rosnati, Gazz. Chim. Ital., 89, 1237 (1959).
- 723. Kali-Chemie Akt-Ges., British Patent 822,695 (1959) [C.A., **54**, 4501i (1960)].
- 724. T. Kametani, T. Honda, and Y. Shiratori, J. Chem. Soc., Perkin I, **1981**, 1386.
- 725a. F. Salmon-Legagneur and G. Poulain, C. R. Acad. Sci., **256**, 702 (1963).
- 725b. Knoll Akt.-Ges. Chemische Fabriken, Belgian Patent 615,861 (1962) [C.A., **59**, 13892d (1963)].
- 726. R. Helmers and W. Kaiser, Tetrahedron Lett., 1971, 3853.
- 727. G. Vasiliu and G. Cristea, Analele univ. C. I. Parhon "Bucuresti," Ser. stiint nat., **9**, 143 (1960) [C.A., **59**, 1549b (1963)].
- 728. S. Casadio and G. Pala, British Patent, 969,068 (1964) [C.A., **61**, 16026g (1964)].
- 729. S. Casadio, G. Pala, and T. Bruzzese, Farmaco Ed. Sci. (Pavia), **17**, 871 (1962).
- 730. H. Pacheco and R. Gaige, Bull. Chim. Soc. Fr., **1965**, 861.
- 731. A. M. Akkerman, H. Kofman, and G. de Vries, Netherlands Patent 105,432 (1963) [C.A., **62**, 6495b (1965)].
- 732. Istituto de Angeli Societa per Azioni, French Patent 1,349,607 (1964) [C.A., **60**, 1445c (1964)].
- 733. E. Szarvasi, Bull. Soc. Chim. Fr., 1968, 4515.
- 734. Cilag-Chemie Ltd., Swiss Patent, 368,487 (1963) [C.A., **60**, 464h (1964)].
- 735. J. Diamond, W. F. Bruce, and F. T. Tyson, J. Org. Chem., **22**, 399 (1957).
- 736. E. Szarvasi and L. Neuvy, Bull. Soc. Chim. Fr., 1962, 1343.
- 737. V. Kameswaran and R. W. Addor, U.S. Patent 4,164,415 (1979) [C.A., **91**, 157511u (1979)].
- 738. V. Kameswaran and R. W. Addor, U.S. Patent 4,046,799 (1977) [C.A., **87**, 167804y (1977)].
- 739. J. Diamond, W. F. Bruce, C. Gochman, and F. T. Tyson, J. Org. Chem., **25**, 65 (1960).
- 740. S. Casdio, British Patent 993,903 (1965) [C.A., 63, 8288h (1965)].

- 741. S. Casadio, T. Bruzzese, G. Pala, G. Coppi, and C. Turba, J. Med. Chem., **9**, 707 (1966).
- 742. E. Szarvasi, French Patent 1,342,159 (1963) [C.A., 60, 6827f (1964)].
- 743. E. Szarvasi and L. Fontaine, French Patent M2765 (1964) [C.A., **62**, 4014c (1965)].
- 744. L. Crombie, M. J. Powell, and P. Tuchinda, Tetrahedron Lett., **1980**, 3603.
- 745. E. Szarvasi, French Addn., 83,531 (1964) [C.A., 62, 535a (1965)].
- 746. E. Szarvasi, French Addn. 82,715 (1964) [C.A., 61, 8281b (1964)].
- 747. UCLAF, French Patent 992,104 (1951) [C.A., 50, 15591d (1956)].
- 748. W. Andersen and I. Fabricius, Danish Patent 108,727 (1968) [C.A., **70**, 68165h (1969)].
- 749. G. Pala, A. Donetti, B. Lumachi, and G. Bonardi, J. Med. Chem., **16**, 720 (1973).
- 750. P. A. J. Janssen, G. H. P. Van Daele, and J. M. Boey, U.S. Patent 4,035,376 (1977) [C.A., **87**, 167738e (1977)].
- 751. K. Takeda, K. Shudo, and T. Okamoto, Chem. Pharm. Bull. (Tokyo), **29**, 1280 (1981).
- 752. F. Salmon-Legagneur and Y. Olivier, C. R. Acad. Sci., 257, 172 (1963).
- 753. M. Pesson, S. Dupin, M. Antoine, D. Humbert, and M. Joannic, Bull. Chim. Soc. Fr., **1965**, 2262.
- 754. M. Barreau and M. Julia, Tetrahedron Lett., **1973**, 1537.
- 755. G. Cavallini, E. Massarani, D. Nardi, and R. D'Ambrosio, J. Am. Chem. Soc., 79, 3514 (1957).
- 756. J. Decombe, C. R. Acad. Sci., 260, 6628 (1965).
- 757. P. M. G. Bavin, Can. J. Chem., 42, 1409 (1964).
- 758. A. A. Solov'yanov, P. I. Dem'yanov, I. P. Beletskaya, and O. A. Reutov, Zh. Org. Khim., **12**, 2287 (1976) [C.A., **86**, 138980b (1977)].
- 759. G. Cavallini and E. Massarani, Farmaco, Ed. Sci. (Pavia), **11**, 167 (1956) [C.A., **50**, 1382a (1956)].
- 760. G. Carenini, M. Carissimi, R. D'Ambrosio, E. Grumelli, E. Milla, and F. Revenna, Farmaco, Ed. Sci. (Pavia), 28, 265 (1973).
- 761. D. Nardi, L. Mauri and F. Barzaghi, Farmaco, Ed. Sci. (Pavia), 20, 456 (1965) [C.A., 63, 82482a (1965)].
- 762. M. Blockmuhl and G. Ehrhart, German Patent 871,761 (1953) [C.A., **52**, 16376d (1958)].
- 763. J. Decombe and G. Dubois, C. R. Acad. Sci., **254**, 4308 (1962).
- 764. A. A. Solov'yanov, P. I. Dem'yanov, I. P. Beletskaya, and O. A. Reutov, Zh. Org. Khim., **13**, 2246 (1977) [C.A., **88**, 61749q (1978)].

- 765. G. Cavallini and E. Massarani, Italian Patent 611,030 (1960) [C.A., **55**, 16490g (1969)].
- 766. Société d'études, de recherches, et d'applications scientifiques et médicales, French Patent 1,209,836 (1960) [C.A., 55, 17584d (1961)].
- 767. K. Peisker, Z. Chem., 13, 344 (1973).
- 768. P. N. Craig and E. S. Rump, Jr., J. Org. Chem., 22, 510 (1957).
- 769. F. Salmon-Legagneur, Bull. Soc. Chim. Fr., 1956, 1253.
- 770. F. Salmon-Legagneur, C. R. Acad. Sci., 236, 2154 (1953).
- 771. S. S. Kulp, V. B. Fish, and N. R. Easton, J. Med. Chem., 6, 516 (1963).
- 772. S. S. Kulp, Org. Prep. Proc. Int., 2, 137 (1970).
- 773. C. Bobin, C. R. Acad. Sci., 258, 949 (1964).
- 774. T. I. Temnikova and R. N. Kovalevskaya, Zh. Obshch. Khim., **35**, 798 (1965) [C.A., **63**, 6940d (1965)].
- 775. G. Cavallini, E. Massarani, D. Nardi, L. Mauri, F. Barzaghi, and P. Mantegazza, J. Am. Chem. Soc., **81**, 2564 (1959).
- 776. J. E. W. Billinghurst, British Patent 787,279 (1957) [C.A., **52**, 10217e (1958)].
- 777. F. Salmon-Legagneur, L. Picquet, and C. Neveu, Bull. Soc. Chim. Fr., **1966**, 2025.
- 778. C. M. Suter, U.S. Patent 2,745,836 (1956) [C.A., 51, 2042d (1957)].
- 779. F. Salmon-Legagneur, C. R. Acad. Sci., 240, 2320 (1955).
- 780. Merck and Co., Inc., Brit. Pat. 999,586 (1965) [C.A., 63, 16266b (1965)].
- 781. N. R. Easton and S. J. Nelson, J. Am. Chem. Soc., 75, 640 (1953).
- 782. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1956, 929.
- 783. F. Salmon-Legagneur, Bull. Soc. Chim. Fr., 1956, 411.
- 784. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 239, 1809 (1954).
- 785. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 237, 64 (1953).
- 786. J. Decombe, C. R. Acad. Sci., 249, 1680 (1959).
- 787. W. J. Welstead, Jr., U.S. Patent 4,120,969 (1978) [C.A., **90**, 72066g (1979)].
- 788. J. H. Poupaert, P. Van Der Jeugd, and B. M. Gerardy, J. Chem. Research (S), **1981**, 192.
- 789. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1959, 1958.
- 790. W. Daniewski, Polish Patent 47,088 (1963) [C.A., 61, 1894f (1964)].
- 791. W. Daniewski, Rocz. Chem., 36, 363 (1962) [C.A., 58, 13942d (1963)].
- 792. G. W. Adelstein, C. H. Yen, E. Z. Dajani, and R. G. Bianchi, J. Med. Chem., **19**, 1221 (1976).
- 793. J. H. Biel, E. P. Sprendeler, H. A. Leiser, J. Horner, A. Drukker, and H. L. Friedman, J. Am. Chem. Soc., **77**, 2250 (1955).

- 794. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 250, 4006 (1960).
- 795. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1956, 1345.
- 796. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 240, 1229 (1955).
- 797. R. Robin, C. R. Acad. Sci., 261, 2673 (1965).
- 798. H. Ruschig and K. Schmitt, German Patent 959,097 (1957) [C.A., **53**, 11316h (1959)].
- 799. C. D. Lunsford and A. D. Cale, Jr., U.S. Patent 3,192,207 (1965) [C.A., 63, 11503a (1965)].
- 800. F. Salmon-Legagneur and C. Neveu, Bull. Soc. Chim. Fr., 1962, 2173.
- 801. A. F. Cockerill and R. T. Hargreaves, J. Chem. Soc., Chem. Commun., **1969**, 915.
- 802. D. Bethell, C. S. Fairclough, and R. G. Wilkinson, J. Chem. Soc., Perkin Trans. 2, **1975**, 1090.
- 803. P. K. Yonan, U.S. Patent 4,217,306 (1980) [C.A., 93, 239254t (1980)].
- 804. F. Salmon-Legagneur, L. Picquet, and C. Neveu, C. R. Acad. Sci., **260**, 5585 (1965).
- 805. F. Salmon-Legagneur, C. Neveu, and A. Belot, Bull. Soc. Chim. Fr., **1957**, 1463.
- 806. F. Salmon-Legagneur and C. Neveu, C. R. Acad. Sci., 243, 2088 (1956).
- 807. F. Salmon-Legagneur, C. Neveu, and A. Belot, C. R. Acad. Sci., **242**, 2647 (1956).
- 808. Italfarmaco S. P. A., Belgian Patent 833,266 (1975) [C.A., 85, 123605p (1976)].
- 809. T. Kametani, Y. Hirai, and Y. Shiratori, J. Am. Chem. Soc., **100**, 554 (1978).
- 810. E. L. Martin, German Patent 2,229,036 (1972) [C.A., **78**, 124321k (1973)].
- 811. M. A. Davis, S. O. Winthrop, and F. Herr, French Patent 1,355,829 (1964) [C.A., 61, 5586g (1964)].
- 812. H. Morren, Belgian Patent 631,558 (1963) [C.A., 61, 4293b (1964)].
- 813. A. Brault, C. R. Acad. Sci., 256, 181 (1963).
- 814. F. Salmon-Legagneur and C. Bobin, C. R. Acad. Sci., 245, 1810 (1957).
- 815. T. Bruzzese and C. Turba, J. Med. Chem., 9, 264 (1966).
- 816. M. A. Davis, S. O. Winthrop, R. A. Thomas, F. Herr, M.-P. Charest, and R. Gaundry, J. Med. Chem., 7, 439 (1964).
- 817. M. A. Davis, U.S. Patent 3,153,050 (1964) [C.A., 62, 3990e (1965)].
- 818. R. Gay and M. Maugras, C. R. Acad. Sci., 255, 2123 (1962).
- 819. K. J. Rorig, U.S. Patent 2,854,472 (1958) [C.A., 53, 11317g (1959)].
- 820. M. Perelman, U.S. Patent 3,222,388 (1965) [C.A., 64, 5012e (1966)].

- 821. M. Perelman and S. Mizsak, J. Med. Chem., 6, 533 (1963).
- 822. P. F. Kador, R. Venkatraman, D. R. Feller, and D. D. Miller, J. Med. Chem., 20, 891 (1977).
- 823. M. P. Cooke, Jr., Tetrahedron Lett., 1981, 381.
- 824. J. M. J. Frechet, M. de Smet, and M. J. Farrall, Tetrahedron Lett., **1979**, 137.
- 825. M. F. Semmelhack, H. T. Hall, Jr., and M. Yoshifuji, J. Am. Chem. Soc., 98, 6387 (1976).
- 826. E. Ochiai and M. Takahashi, Japanese Patent 28,907 ('65) (1963) [C.A., 64, 11183h (1966)].
- 827. G. A. Archer, R. I. Kalish, R. Y. Ning, B. C. Sluboski, A. Stempel, T. V. Steppe, and L. H. Sternback, J. Med. Chem., 20, 1312 (1977).
- 828. J. W. Cusic and H. W. Sause, U.S. Patent 3,225,054 (1965) [C.A., 64, 6625f (1966)].
- 829. K. Scholz and L. Panizzon, Helv. Chim. Acta, 37, 1605 (1954).
- 830. E. Boger, R. F. O'Malley, and D. J. Sardella, J. Fluorine Chem., **8**, 513 (1976).
- 831. D. J. Sardella, P. Mahathalang, H. A. Mariani, and E. Boger, J. Org. Chem., 45, 2064 (1980).
- 832. J. L. Neumeyer, K. K. Weinhardt, R. A. Carrano, and D. H. McCurdy, J. Med. Chem., 16, 808 (1973).
- 833. R. J. Wolters, A. J. Bej, and N. S. Tanner, J. Pharm. Sci., **64**, 2013 (1975).
- 834. J. W. Hanifin, Jr. and D. N. Ridge, U.S. Patent 4,197,310 (1980) [C.A., 93, 71539p (1980)].
- 835. F. Salmon-Legagneur, Y. Olivier, and C. Bobin, Bull. Soc. Chim. Fr., **1964**, 1185.
- 836. W. Addison, N. S. Dalal, Y. Hoyano, Can. J. Chem., 55, 4191 (1977).
- 837. Y. Yamazaki and T. Kawai, Sekiya Gakkai Shi, **12**, 693 (1969) [C.A., **72**, 66343g (1970)].
- 838. Y. Ogata, Y. Izawa, and Y. Osumi, Bull. Chem. Soc. Jpn., 37, 74 (1964).
- 839. L. Kh. Vinograd and N. S. Vul'fson, Zh. Obshch. Khim., 29, 245 (1959) [C.A., 53, 21785i (1959)].
- 840. N. Idris, M. Perry, and J. Seyden-Penne, J. Chem. Research (S), **1978**, 128.
- M. Bellassoued, F. Dardoise, and F. Gaudemar-Bardone, Tetrahedron, 32, 2713 (1976).
- 842. R. B. Moffett and T. L. Pickering, J. Med. Chem., 14, 1100 (1971).
- 843. I. Kompis and A. E. Wick, German Patent 2,847,825 (1979) [C.A., **91**, 107996k (1979)].

- 844. M. F. Semmelhack, W. Seufert, and L. Keller, J. Am. Chem. Soc., 102, 6584 (1980).
- 845. B. Zupancic and M. Kokali, Synthesis, 1981, 913.
- 846. T. Kametani, H. Nemoto, and M. Tsubuki, J. Chem. Soc., Perkin Trans. I, **1979**, 2830.
- 847. D. Zavoianu and A. Mori, Analele univ. C. I. Parhon "Bucuresti," Ser. stiint. nat., Chim., **18**, 79 (1969) [C.A., **73**, 130795f (1970)].
- 848. M. Avramoff and Y. Sprinzak, J. Org. Chem. 26, 1234 (1961).
- 849. J. G. Noltes, H. M. J. C. Creemers, and G. J. M. Vanderkerk, J. Organomet. Chem., **11**, P21 (1968).
- 850. S. Wawzonek, E. M. Smolin, and J. E. Durham, J. Magn. Reson., **6**, 547 (1974).
- 851. S. Wawzonek, J. Am. Chem. Soc., 68, 1157 (1946).
- 852. D. Lednicer, P. F. VonVoigtlander, and D. E. Emmert, J. Med. Chem., 23, 424 (1980).
- M. C. Roux, L. Wartski, and J. Seyden-Penne, Tetrahedron, 37, 1927 (1981).
- 854. B. Deschamps, M.-C. Roux-Schmitt, and L. Wartski, Tetrahedron Lett., **1979**, 1377.
- 855. M. C. Roux-Schmitt, J. Seyden-Penne, and S. V. Baddeley, Tetrahedron Lett., **1981**, 2171.
- 856. U. Ebner and H.-H. Otto, Monatsh. Chem., **106**, 601 (1975).
- 857. A. Sammour and M. El-Hashash, Egypt. J. Chem., 16, 381 (1973) [C.A., 82, 31084c (1975)].
- 858. A. Sammour, A. Raouf, M. Elkasaby, and M. A. Hassan, Acta Chim. Acad. Sci. Hung., 83, 209 (1974) [C.A., 82, 31219a (1975)].
- 859. A. Essawy and A. A. Hamed, Ind. J. Chem., **16B**, 880 (1978).
- 860. I. H. Sánchez and M. T. Mendoza, Tetrahedron Lett., **1980**, 3651.
- 861. M. C. Roux-Schmitt, L. Wartski, and J. Seyden-Penne, Synth. Commun., **11**, 85 (1981).
- 862. L. Wartski, M. E. Bouz, and J. Seyden-Penne, Tetrahedron Lett., **1979**, 1543.
- 863. K. A. Parker and J. Kallmerten, J. Org. Chem., 45, 2620 (1980).
- 864. G. Sauer, U. Eder, G. Haffer, G. Neef, and R. Wiechert, German Patent 28 32,606 (1980) [C.A., **93**, 150492w (1980)].
- 865. J. Wildeman, P. C. Borgen, H. Pluim, P. H. F. M. Rouwette, and A. M. van Leusen, Tetrahedron Lett., **1978**, 2213.
- 866. K. A. Parker and J. L. Kallmerten, Tetrahedron Lett., 1979, 1197.
- 867. G. A. Russell, M. Makosza, and J. Hershberger, J. Org. Chem., **44**, 1195 (1979).

- 868. C. A. Brown, Synthesis, **1975**, 326.
- 869. G. Vasiliu and N. Barbulescu, Analele univ. C. I. Parhon "Bucuresti," Ser. stiint nat., 16, 99 (1957) [C.A., 53, 1238h (1959)].
- 870. L. Rylski, F. Gajewski, and Z. Kaminski, Acta Pol. Pharm., **31**, 577 (1974) [C.A., **83**, 79034j (1975)].
- 871. G. Adrian, A. Benattar, and M. X. Sion, French Patent 2,415,095 (1979) [C.A., 92, 180846m (1980)].
- 872. G. Adrian, A. Benattar, and M. X. Sion, French Patent 2,424,898 (1979) [C.A., 92, 214971r (1980)].
- 873. V. H. Maddox, E. F. Godefroi, and R. F. Parcell, J. Med. Chem., 8, 230 (1965).
- 874. H. H. Ong and J. A. Profitt, U.S. Patent 4,209,625 (1980) [C.A., **93**, 204474n (1980)].
- 875. S. Huybrechts and G. J. Hoornert, Synth. Commun., 11, 17 (1981).
- 876. L. Rylski and F. Gajewski, Acta Pol. Pharm., 26, 115 (1969) [C.A., 71, 38741w (1969)].
- 877. J. A. Skorcz and J. E. Robertson, J. Med. Chem., 8, 255 (1965).
- 878. K. Thomae, British Patent 948,874 (1964) [C.A., 60, 13228c (1964)].
- 879. B. M. Trost and L. N. Jungheim, J. Am. Chem. Soc., 102, 7910 (1980).
- 880. E. A. Markaryan and Zh. S. Arustamyan, Arm. Khim. Zh., 27, 779 (1974) [C.A., 82, 139935v (1975)].
- 881. W. Flitsch, H. Lerner, and H. Zimmermann, Chem. Ber., **110**, 2765 (1977).
- 882. M. Julia and A. Rovault, Bull. Soc. Chim. Fr., 1959, 1833.
- 883. R. Verhé, N. DeKimpe, L. DeBuyck, W. Steurbaut, M. Safones, R. Willaert, J.-P. Verbeek, and N. Schamp, Bull. Soc. Chem. Belg., 89, 459 (1980).
- 884. H. H. Ong and J. A. Profitt, U.S. Patent 4,198,417 (1980) [C.A., **93**, 71568x (1980)].
- 885. H. H. Ong and J. A. Profitt, U.S. Patent 4,198,419 (1980) [C.A., **93**, 71569v (1980)].
- 886. C. H. Hassall and B. A. Morgan, J. Chem. Soc., Chem. Commun., **1970**, 1345.
- 887. N. Sugimoto, S. Saito, and S. Oshiro, Japanese Patent 13,828 (1961)
  [C.A., 56, 10114b (1962)].
- 888. D. Heissler and J. J. Riehl, Tetrahedron Lett., **1980**, 4711.
- 889. M. Cushman and D. K. Dikshit, J. Org. Chem., 45, 5064 (1980).
- 890. F. DiNinno, Jr., W. L. Heckle, Jr., D. K. Rehse, and R. M. Wilson, Tetrahedron Lett., **1972**, 2639.
- 891. R. M. Wilson, R. A. Farr, and D. J. Burlett, J. Org. Chem., 46, 3293

(1981).

- 892. N. N. Suvorov, Yu. I. Smushkevich, V. S. Velezheva, V. S. Rozhkov, and S. V. Simakov, Khim. Geterotsikl. Soedin., **1976**, 191 [C.A., **84**, 179957b (1976)].
- 893. R. F. Borch, A. J. Evans, and J. J. Wade, J. Am. Chem. Soc., 97, 6282 (1975).
- 894. J. Meier, Bull. Soc. Chim. Fr., **1962**, 290.
- 895. J. Shabtai and E. Ney-Igner, J. Org. Chem., 40, 1158 (1975).
- 896. D. A. White and M. M. Baizer, J. Chem. Soc., Perkin I, 1973, 2230.
- 897. G. Kraus and K. Frazier, J. Org. Chem., 45, 4820 (1980).
- 898. H. Tucker, G. Golding, and S. R. Purvis, Tetrahedron Lett., 1981, 1373.
- 899. K. Takabe, S. Ohkawa, T. Sato, G. H. Tang, and T. Katagiri, Tetrahedron Lett., **1980**, 3883 and **1981**, 602 (erratum).
- 900. K. Takabe, S. Ohkawa, and T. Katagiri, Synthesis, 1981, 358.
- 901. K. Utimoto, Y. Wakabayashi, and Y. Shishiyama, Tetrahedron Lett., **1981**, 4279.
- 902. U. Hertenstein, S. Hünig, and M. Öller, Chem. Ber., 113, 3783 (1980).
- 903. H. Bohme and R. Schweitzer, Arch. Pharm. (Weinheim), **303**, 170 (1970).
- 904. J. Ficini, J. d'Angelo, and J. Noiré, J. Am. Chem. Soc., 96, 1213 (1974).
- 905. F. E. Ziegler and T. F. Wang, Tetrahedron Lett., 1981, 1179.
- 906. S. Hünig and M. Öller, Chem. Ber., **114**, 959 (1981).
- 907. L. S. Hegedus and W. H. Darlington, J. Am. Chem. Soc., **102**, 4980 (1980).
- 908. N. Seuron, L. Wartski, and J. Seyden-Penne, Tetrahedron Lett., **1981**, 2175.
- 909. S. A. Ferrino and L. A. Maldonado, Synth. Commun., 16, 717 (1980).
- 910. C. T. Buse and C. H. Heathcock, J. Am. Chem. Soc., 99, 8109 (1977).
- 911. D. S. Park and L. A. Maldonado, Synth. Commun., 9, 81 (1979).
- 912. S. Hünig and G. Wehner, Chem. Ber., 113, 324 (1980).
- 913. S. Hünig and G. Wehner, Chem. Ber., **113**, 302 (1980).
- 914. J. A. Noquez and L. A. Maldonado, Synth. Commun., 6, 39 (1976).
- 915. A. Casares and L. A. Maldonado, Synth. Commun., 6, 11 (1976).
- 916a. R. K. Varma and C. M. Cimarusti, U.S. Patent 3,976,638 (1976); [C.A., **86**, 43915v (1977)].
- 916b. H. W. R. Williams, German Patent 1,943,150 (1970) [C.A., **73**, 87949v (1970)].
- 916c. C. S. Rooney, R. S. Stuart, B. K. Wasson, and H. W. R. Williams, Can. J. Chem., **53**, 2279 (1975).

- 917. T. Takahashi, K. Hori, and J. Tsuji, Tetrahedron Lett., 1981, 119.
- 918. F. E. Ziegler and J. J. Piwinski, J. Am. Chem. Soc., 102, 6576 (1980).
- 919. N. Wang, S. Su, and L. Tsai, Tetrahedron Lett., **1979**, 1121.
- 920. B. B. Snider, N. J. Hrib, and L. Fuzesi, J. Am. Chem. Soc., **98**, 7115 (1976).
- 921. M. J. O'Donnell and T. M. Eckrich, Tetrahedron Lett., 1978, 4625.
- 922. H. Ahlbrecht and K. Pfaff, Synthesis, **1980**, 413.
- 923. S. F. Dyke, A. C. Ellis, R. G. Kinsman, and A. W. C. White, Tetrahedron, 30, 1193 (1974).
- 924. C. G. Jones, J. Org. Chem., **37**, 624 (1972).
- 925. L. N. Mander, J. V. Turner, and B. Twitchin, Tetrahedron Lett., **1981**, 3017.
- 926. M. M. Midland and Y. C. Kwon, J. Org. Chem., 46, 229 (1981).
- 927. V. Martynov and A. V. Shchelkunov, Tr. Khim.-Met. Inst., Akad. Nauk Kaz. SSR, **5**, 79 (1969) [C.A., **72**, 21540c (1970)].